!!Abhik Ghosh - Selected Publications
\\
(1) Alemayehu, A. B.; Day, N. U.; Mani, T.; Rudine, A. B.; Thomas, K. E.; Gederaas, O. A.; Vinogradov, S. A.; Wamser, C. C.; Ghosh, A. Gold Tris(carboxyphenyl)corroles as Multifunctional Materials: Room Temperature Near-IR Phosphorescence and Applications to Photodynamic Therapy and Dye-Sensitized Solar Cells. ACS Applied Materials and Interfaces 2016, 8, 18935-18942. First paper on Au corroles as a new class of phosphorescent photosenstizers in PDT; ReO corroles are now known to serve a similar role.\\
\\
(2) Thomas, K. E.; McCormick, L. J.; Vazquez-Lima, H.; Ghosh, A. Stabilization and Structure of the Cis Tautomer of a Free-Base Porphyrin. Angew. Chem. Int. Ed. 2017, 56, 10088-10092. Isolation of the long-sought intermediate of porphyrin tautomerism.\\
\\
(3) Ganguly, S.; Ghosh, A. Seven Clues to Ligand Noninnocence: The Metallocorrole Paradigm. Acc. Chem. Res. 2019, 52, 2003–2014. A “how-to” manual for establishing noninnocence in transition metal complexes.\\
\\
(4) Reinholdt, A.; Alemayehu, A. B.; Gagnon, K. J.; Bendix, J.; Ghosh, A. Electrophilic Activation of Osmium-Nitrido Corroles: The OsN Triple Bond as a π-Acceptor Metallaligand in a Heterobimetallic OsVIN–PtII Complex. Inorg. Chem. 2020, 59, 5276–5280. Demonstration of the exceptional stability (and hence biocompatibility) of 5d metallocorroles.\\
\\
(5) Higashino, T.; Kurumisawa, Y.; Alemayehu, A. B.; Einrem, R. F.; Sahu, D.; Packwood, D.; Kato, K.; Yamakata, A.; Ghosh, A.; Imahori, H. Heavy Metal Effects on the Photovoltaic Properties of Metallocorroles in Dye-Sensitized Solar Cells. ACS Appl. Energy Mater. 2020, 3, 12, 12460-12467. Surprising demonstration that the photovoltaic activity of 5d metallocorroles arises from singlet (S1) rather than triplet (T1) state reactivity (unlike in photodynamic therapy).\\
\\
(6) Phung, Q. M.; Muchammad, Y.; Yanai, T.; Ghosh, A. A DMRG/CASPT2 Investigation of Metallocorroles: Quantifying Ligand Noninnocence in Archetypal 3d and 4d Element Derivatives. JACS Au 2021, 1, 2303-2314. State-of-the-art quantification and ranking of ligand noninnocence.\\
\\
(7) Alemayehu, A. B.; McCormick-McPherson, L. J.; Conradie, J.; Ghosh, A. Rhenium Corrole Dimers: Electrochemical Insights into the Nature of the Metal–Metal Quadruple Bond. Inorg. Chem. 2021, 60, 8315–8321. First in-depth electrochemical characterization of a quadruple bond.\\
\\
(8) Braband, H.; Benz, M.; Spingler, B.; Conradie, J.; Alberto, R.; Ghosh, A. Relativity as a Synthesis Design Principle: A Comparative Study of [[3+ 2]] Cycloaddition of Technetium(VII) and Rhenium(VII)-Trioxo Complexes with Olefins. Inorg. Chem. 2021, 60, 11090-11097. Dramatic difference in reactivity between 99Tc and Re is attributed to relativistic effects.\\
\\
(9) Alemayehu, A. B.; Thomas, K. E.; Einrem, R. F.; Ghosh, A. The Story of 5d Metallocorroles: From Metal–Ligand Misfits to New Building Blocks for Cancer Phototherapeutics. Acc. Chem. Res. 2021, 54, 3095–3107. An account of the development of the field as it unfolded largely in Ghosh’s laboratory.\\
\\
(10) Wamser, C. C. W.; Ghosh, A. The Hyperporphyrin Concept: A Contemporary Perspective. JACS Au 2022, 2, 1543–1560. An account of newer findings in porphyrin optical spectroscopy, based largely on the authors’ contributions.\\ \\[{ALLOW view All}][{ALLOW edit aghosh}][{ALLOW upload aghosh}][{ALLOW comment All}]
[{ALLOW view All}][{ALLOW edit aghosh}][{ALLOW upload aghosh}][{ALLOW comment All}]