Sir Alan Fersht - Selected Publications#
1. Structure and Mechanism in Intramolecular Catalysis. The Hydrolysis of Substituted Aspirins. A.R. Fersht and A.J. Kirby, J. Amer. Chem Soc. 89, 4853-4857 (1967).
2. The Hydrolysis of Aspirin. Intramolecular General Base Catalysis of Ester Hydrolysis. A.R. Fersht and A.J. Kirby, J. Amer. Chem. Soc. 89, 4857-4863 (1967).
3. Intramolecular Nucleophilic Catalysis of Ester Hydrolysis by the Carboxylate Group. A.R. Fersht and A.J. Kirby, J. Amer. Chem.Soc. 89, 5960 (1967).
4. Intramolecular General Acid Catalysis of Ester Hydrolysis by the Carboxylic Acid Group. A.R. Fersht and A.J. Kirby, J. Amer. Chem. Soc. 89, 5961 (1967).
5. Intramolecular Nucleophilic Catalysis of Ester Hydrolysis by the Ionized Carboxyl Group. The Hydrolysis of 3,5-Dinitroaspirin Anion. A.R. Fersht and A.J. Kirby, J. Amer. Chem. Soc. 90, 5818-5826 (1968).
6. Intramolecular Nucleophilic Catalysis in the Hydrolysis of Substituted Aspirin Acids. A.R. Fersht and A.J. Kirby, J. Amer. Chem. Soc. 90, 5826-5832 (1968).
7. Series Nucleophilic Catalysis in the Hydrolysis of 3-Acetoxyphthalate. Intramolecular Catalysis of Ester Hydrolysis by the Carboxyl Group Once Removed. A.R. Fersht and A.J. Kirby, J. Amer. Chem. Soc. 90, 5833-5838 (1968).
8. The Acetylpyridinium Ion Intermediate in Pyridine-Catalyzed Acyl Transfer. A.R. Fersht and W.P. Jencks, J. Amer. Chem. Soc. 90, 2125 (1969).
9. The Acetylpyridinium Ion Intermediate in Pyridine-Catalyzed Hydrolysis and Acyl Transfer Reactions of Acetic Anhydride. Observation, Kinetics Structure-Reactivity Correlations and Effects of Concentrated Salt Solutions. A.R. Fersht and W.P. Jencks, J. Amer. Chem. Soc. 92, 5432-5442 (1970).
10. Reactions of Nucleophilic Reagents with Acylating Agents of Extreme Reactivity and Unreactivity. Correlation of -values for Attacking and Leaving Group Variation. A.R. Fersht and W.P. Jencks, J. Amer. Chem. Soc. 92, 5442-5452 (1970).
11. Free Energies of Hydrolysis of Amides and Peptides in Aqueous Solution at 25o. A.R. Fersht and Y. Requena, J. Amer. Chem. Soc. 93, 3499-3504 (1971).
12. Acyl-transfer Reactions of Amides and Esters with Alcohols and Thiols. A Reference System for the Serine and Cysteine Proteinases. Concerning the N Protonation of Amides and Amide-Imidate Equilibria. A.R. Fersht, J. Amer. Chem. Soc. 93, 3504-3515 (1971).
13. Equilibrium and Rate Constants for the Interconversion of Two Conformations of α-Chymotrypsin. The Existence of a Catalytically Inactive Conformation at Neutral pH. A.R. Fersht and Y. Requena, J. Mol. Biol. 60, 279-290 (1971).
14. Mechanism of the α-Chymotrypsin-Catalyzed Hydrolysis of Amides.pH Dependence of kc and Km. Kinetic detection of an Intermediate. A.R. Fersht and Y. Requena, J. Amer. Chem. Soc. 93, 7079-7087 (1971).
15. Conformational Equilibria and the Salt Bridge in Chymotrypsin. A.R. Fersht, Cold Spring Harbor Symp. on Quan. Biol. Vol. XXXVI, 71-73 (1971).
16. Mechanism of the α-Chymotrypsin-Catalyzed Hydrolysis of Specific Amide Substrates. A.R. Fersht, J. Amer. Chem. Soc. 94, 293-295 (1972).
17. Conformational Equilibria in α- and δ-Chymotrypsin. The Energetics and Importance of the Salt Bridge. A.R. Fersht, J. Mol. Biol. 64, 497-509 (1972).
18. The Catalytic Activity of the Inactive Conformation of α-Chymotrypsin. A.R. Fersht, FEBS Lett, 29, 283-285 (1973).
19. The Charge Relay System in Chymotrypsin and Chymotrypsinogen. A.R. Fersht and J. Sperling, J. Mol. Biol. 74, 137-149 (1973).
20. Mechanism of Chymotrypsin. Structure, Reactivity and Non-Productive Binding Relationships. J. Fastrez and A.R. Fersht, Biochemistry 12, 1067-1074 (1973).
21. Demonstration of the Acyl-Enzyme Mechanism for the Hydrolysis of Peptides and Anilides by Chymotrypsin. J. Fastrez and A.R. Fersht, Biochemistry 12, 2025-2034 (1973).
22. Leaving Group specificity in Chymotrypsin-Catalyzed Hydrolysis of Peptides. A Stereochemical Interpretation. A.R. Fersht, D.M. Blow and J. Fastrez, Biochemistry 12, 2035-2041 (1973).
23. Anomalous pH Dependence of kcat /KM in Enzyme Reactions. Rate Constants for the Association of Chymotrypsin with Substrates. M. Renard and A.R. Fersht, Biochemistry 12, 4713-4718 (1973).
24. pH Dependence of Chymotrypsin Catalysis. A.R. Fersht and M. Renard, Biochemistry 13, 1416-1426 (1974).
25. Influence of the Globin structure on the State of Heme II. Allosteric Transitions in Methemoglobin. M.R. Perutz, A.R. Fersht, S.R. Simon and G.K. Roberts, Biochemistry 13, 2174-2186 (1974).
26. Catalysis, Binding and Enzyme-Substrate Complementarity. A.R. Fersht, Proc. Roy. Soc. Lond. B. 187, 397-407 (1974).
27. Active Site Titration and Aminoacyl Adenylate Binding Stoichiometry of Aminoacyl-tRNA Synthetases. A.R. Fersht, J.A. Ashford, C.J. Bruton, R. Jakes, G.L.E. Koch and B.S. Hartley, Biochemistry 14, 1-4 (1975).
28. Demonstration of Two Active Sites on a Monomeric Aminoacyl-tRNA Synthetase. Possible Roles of Negative Cooperativity and Half-of-the-Sites Reactivity in Oligomeric Enzymes. A.R. Fersht, Biochemistry 14, 5-12 (1975).
29. Ligand Binding and Enzyme Catalysis Coupled Through Subunits in Tyrosyl-tRNA Synthetase. A.R. Fersht, R.S. Mulvey and G.L.E. Koch, Biochemistry 14, 13-18 (1975).
30. Tyrosyl-tRNA Synthetase from Escherichia coli: Stoichiometry of Ligand-Binding and Half-of-the-sites Reactivity in Aminoacylation. R. Jakes and A.R. Fersht, Biochemistry 14, 3344-3350 (1975).
31. Demonstration of Two Reaction Pathways for the Aminoacylation of tRNA. Application of the Pulsed Quenched Flow Technique. A.R. Fersht and R. Jakes, Biochemistry 14 3350-3356 (1975).
32. Subunit Interactions in the Methionyl-tRNA synthetase of B. Stearothermophilus. R.S. Mulvey and A.R. Fersht, Biochemistry 15, 243-249 (1976).
33. Mechanism of the Aminoacylation of tRNA. Proof of the Aminoacyl Adenylate Pathway for the Isoleucyl- and Tyrosyl-tRNA Synthetase from Escherichia coli K12. A.R. Fersht and M.M. Kaethner, Biochemistry 15, 818-823 (1976).
34. Enzyme Hyperspecificity. Rejection of Threonine by the Valyl-tRNA Synthetase by Misacylation and Hydrolytic Editing. A.R. Fersht and M.M. Kaethner, Biochemistry 15, 3342-3346 (1976).
35. Editing Mechanisms in Protein Synthesis. Rejection of Valine by the Isoleucyl-tRNA Synthetase. A.R. Fersht, Biochemistry 16, 1025-1030 (1977).
36. Ligand Binding stoichiometries, Subunit Structure and Slow Transitions in Aminoacyl-tRNA Synthetases. R.S. Mulvey and A.R. Fersht, Biochemistry 16, 4005-4013 (1977).
37. Energy Expenditure in the Editing Mechanism of Protein Synthesis. R.S. Mulvey and A.R. Fersht, Biochem. Soc. Trans. 5, 672-675 (1977).
38. Editing Mechanisms in Aminoacylation of tRNA: ATP Consumption and the Binding of Aminoacyl-tRNA by Elongation Factor Tu. R.S. Mulvey and A.R. Fersht, Biochemistry 16, 4731-4737 (1977).
39. The Aminoacyladenylate Mechanism in the Aminoacylation Reaction of Yeast Phenylalanyl-tRNA Synthetase. F. Fasiolo and A.R. Fersht, Eur. J. Biochem. 85, 85-88 (1978).
40. Reaction Pathway and Rate-Determining Step in the Aminoacylation of tRNAArg Catalyzed by the Arginyl-tRNA Synthetase from Yeast. A.R. Fersht, J. Gangloff and G. Dirheimer, Biochemistry 17, 3740-3746 (1978).
41. Mechanism and Specificity of Aminoacyl-tRNA Synthetase: 'Double-Sieve' Sorting. A.R. Fersht and C. Dingwall, Proceedings of the 12th FEBS Meeting (1978) 52, 59-80 (1979) (Ed. E. Hofmann, W. Pfeil and H. Aurich, Pergamon Press). 42. Mechanism of Aminoacylation of tRNA. A Pre-steady-state Analysis of the Reaction Pathway Catalyzed by the Methionyl-tRNA Synthetase of Bacillus stearothermophilus. R.S. Mulvey and A.R. Fersht, Biochemistry 17, 5591-5597 (1978).
43. Evidence for the Double-Sieve Editing Mechanism in Protein Synthesis. Steric Exclusion of Isoleucine by Valyl-tRNA Synthetases. A.R. Fersht and C. Dingwall, Biochemistry 12, 2627-2631 (1979).
44. Rapid Intramolecular Coupling of Active Sites in the Pyruvate Dehydrogenase Complex of Escherichia coli: Mechanism for rate Enhancement in the Multimeric Structure. M.J. Danson, A.R. Fersht and R.H. Perham, Proc. Natl. Acad. Sci. U.S.A. 75, 5386-5390 (1978).
45. Establishing the Misacylation/Deacylation of the tRNA Pathway for the Editing Mechanism of Prokaryotic and Eukaryotic Valyl-tRNA Synthetases. A.R. Fersht and C. Dingwall, Biochemistry 18, 1238-1245 (1979).
46. Cysteinyl-tRNA from Escherichia coli does not Need an Editing Mechanism to Reject Serine and Alanine. High Binding Energy of Small Groups in Specific Molecular Interactions. A.R. Fersht and C. Dingwall, Biochemistry 18, 1245-1249 (1979).
47. An Editing Mechanism for the Methionyl-tRNA Synthetase in the Selection of Amino Acids in Protein Synthesis. A.R. Fersht and C. Dingwall, Biochemistry 18, 1250-1256 (1979).
48. Editing Mechanisms in the Aminoacylation of tRNA. A.R. Fersht, in 'Transfer RNA. Structure, Properties and Recognition' pp. 247-254 (1979) (Cold Spring Harbor Laboratory).
49. Fidelity of Replication of Phage øX174 DNA by DNA Polymerase III Holoenzyme: Spontaneous Mutation by Misincorporation. A.R. Fersht, Proc. Natl. Acad. Sci. U.S.A. 76, 4946-4950 (1979).
50. Intramolecular Catalysis and the Mechanism of Enzyme Action. A.R. Fersht and A.J. Kirby, Chemistry in Britain 16, 136-156 (1980).
51. Enzymic Editing Mechanisms in Protein Synthesis and DNA Replication. A.R. Fersht, Trends in Biochemical Sciences 5, 262-265 (1980).
52. Probing the Limits of Protein-Amino Acid Side Chain Recognition with the Aminoacyl-tRNA Synthetases. Discrimination against Phenylalanine by Tyrosyl-tRNA Synthetases. A.R. Fersht, J.S. Shindler and W.-C. Tsui, Biochemistry 19, 5520-5524 (1980).
53. DNA Polymerase Accuracy and Spontaneous Mutation Rates: Frequencies of Purine:Purine, Purine.Pyrimidine and Pyrimidine:Pyrimidine Mismatches during DNA Replication. A.R. Fersht and J.W. Knill-Jones, Proc. Natl. Acad. Sci. 78, 4251-4255 (1981).
54. Alternative Pathways for Editing Non-Cognate Amino Acids by the Aminoacyl-tRNA Synthetases. H. Jakubowski and A.R. Fersht, Nucleic Acids Research 9, 3105-3117 (1981).
55. Enzymic Editing Mechanisms and the Genetic Code. A.R. Fersht, Proc. Roy . Soc. B212, 351-379 (1981).
56. Probing the Principles of Amino Acid Selection Using the Alanyl-tRNA Synthetase from Escherichia coli. W.-C. Tsui and A.R. Fersht, Nucleic Acids Research 9, 4627-4637 (1981).
57. Kinetic Basis of Spontaneous Mutation: Misinsertion Frequencies, Proofreading Specificities and Cost of Proofreading by DNA Polymerases of Escherichia coli. A.R. Fersht, J.W. Knill-Jones and W.-C. Tsui, J. Mol. Biol. 156, 37-51 (1982).
58. Chemical Basis of Biological Specificity. A.R. Fersht, Pure and Applied Chemistry 54, 1819-1824 (1982).
59. RecA Protein from Escherichia coli: A Very Rapid and Simple Purification Procedure: Binding of ATP and ADP by the Homogeneous Protein. S.M. Cotterill, A.C. Satterthwait and A.R. Fersht, Biochemistry 21, 4332-4337 (1982).
60. Redesigning Enzyme Structure by Site-Directed Mutagenesis: Tyrosyl-tRNA Synthetase and ATP Binding. G. Winter, A.R. Fersht, A.J. Wilkinson, M. Zoller and M. Smith, Nature 299, 756-758 (1982).
61. Direct Observation of Complexes Formed Between recA Protein and a Fluorescent Single-Stranded Deoxyribonucleic Acid Derivative. M.S. Silver and A.R. Fersht, Biochemistry 21, 6066-6072 (1982).
62. Fidelity of Replication of Bacteriophage φX174 in vitro and in vivo. A.R. Fersht, J.W. Knill-Jones, J. Mol. Biol. 165, 633-654 (1983).
63. Kinetics of Base Misinsertion by DNA Polymerase I of Escherichia coli. A.R. Fersht, J.-P. Shi and W.-C. Tsui, J. Mol. Biol. 165, 655-667 (1983).
64. Contribution of 3'-5'-exonuclease activity of DNA Polymerase III holoenzyme from Escherichia coli to specificity. A.R. Fersht and J.W. Knill-Jones, J. Mol. Biol. 165, 669-682 (1983).
65. Investigation of Binding Between recA Protein and Single-stranded Polynucleotides with the Aid of a Fluorescent Deoxyribonucleic Acid Derivative. M.S. Silver and A.R. Fersht, Biochemistry 22, 2860-2866 (1983).
66. RecA Filaments in Solution. S.M. Cotterill and A.R. Fersht, Biochemistry 22, 3525-3531 (1983).
67. Site-Directed Mutagenesis as a Probe of Enzyme Structure and Catalysis: Tyrosyl-tRNA Synthetase Cysteine-35 to Glycine-35 Mutation. A.J. Wilkinson, A.R. Fersht, D.M. Blow and G. Winter, Biochemistry 22, 3581-3586 (1983).
68. Accuracy of DNA Polymerase-α in Copying Natural DNA. F. Grosse, G. Krauss, J.W. Knill-Jones and A.R. Fersht, EMBO Journal 2, 1515-1519 (1983).
69. Direct Observation of Complexes of ssb and recA Proteins with a Fluorescent Single-Stranded Deoxyribonucleic Acid Derivative. S.M. Cotterill and A.R. Fersht, Biochemistry 22, 5878-5881 (1983).
70. Deletion Mutagenesis Using an 'M13 splint': The N-terminal Structural Domain of Tyrosyl-tRNA Synthetase (B. stearothermophilus) Catalyses the Formation of Tyrosyl Adenylate. M.M.Y. Waye, G. Winter, A.J. Wilkinson and A.R. Fersht, EMBO Journal 2, 1827-1829 (1983).
71. Genetic Dissection of Tyrosyl-tRNA Synthetase. G. Winter, P. Carter, M.M.Y. Waye, D.M. Blow, A.J. Wilkinson, J.P. Shi and A.R. Fersht, Biochem. Soc. Trans. 12, 224-225 (1984).
72. A large increase in enzyme-substrate affinity by protein engineering. A.J. Wilkinson, A.R. Fersht, D.M. Blow, P. Carter and G. Winter, Nature 307, 187-188 (1984).
73. Studying Enzyme-Substrate Interactions by Site-Directed Mutagenesis. A.R. Fersht and G.P. Winter, Pontificiae Academiae Scientarium Scripta Varia 55, 123-132 (1984).
74. Fidelity of DNA Replication under Conditions Used for Oligodeoxynucleotide-directed Mutagenesis. J.-P. Shi and A.R. Fersht, J. Mol. Biol. 177, 269-278 (1984).
75. Basis of Biological Specificity. A.R. Fersht, Trends in Biochemical Sciences 9, 145-147 (1984).
76. Analysis of Enzyme Structure and Activity by Protein Engineering. A.R. Fersht, J.-P. Shi, A.J. Wilkinson, D.M. Blow, P. Carter, M.M.Y. Waye and G. Winter, Angewandte Chemie 96, 455-462 (1984).
77. The Use of Double Mutants to Detect Structural Changes in the Active Site of the Tyrosyl-tRNA Synthetase (Bacillus stearothermophilus) P.J. Carter, G. Winter, A.J. Wilkinson and A.R. Fersht Cell 38, 835-840 (1984).
78. Engineering Enzymes. G. Winter and A.R. Fersht, Trends in Biotechnology 2, 115-119 (1984).
79. Fidelity of DNA replication in vitro. A.R. Fersht, in 'Proteins involved in DNA Replication'. (Eds. U. Hubscher and S. Spadari) Plenum, New York and London pp. 525-533 (1984).
80. Replication of φX174 DNA by Calf Thymus DNA Polymerase-α Measurement of Error Rates at the Amber-16 Codon. F. Grosse, G. Krauss, J.W. Knill-Jones and A.R. Fersht, in 'Proteins Involved in DNA Replication'. (Eds. U. Hubscher and S. Spadari) Plenum, New York and London pp. 535-540 (1984).
81. Hydrogen Bonding and Biological Specificity Analysed by Protein Engineering. A.R. Fersht, J.-P. Shi, J. Knill-Jones, D.M. Lowe, A.J. Wilkinson, D.M. Blow, P. Brick, P. Carter, M.M.Y. Waye and G. Winter, Nature 314, 235-238 (1985). 82. Redesigning Enzymes by Site-Directed Mutagenesis. A.R. Fersht and G.P. Winter, in 'Enzymes in Organic Synthesis'. Pitman, London. (Ciba Foundation Symposium 111) pp. 204-218 (1985). 83. Probing Histidine-Substrate Interactions in Tyrosyl-tRNA Synthetase Using Asparagine and Glutamine Replacements. D.M. Lowe, A.R. Fersht, A.J. Wilkinson, P. Carter and G. Winter, Biochemistry 24, 5106-5109 (1985).
84. Reversible Dissociation of the Dimeric Tyrosyl-tRNA Synthetase by Mutagenesis at the Subunit Interface. D.H. Jones, A.J. McMillan, A.R. Fersht and G. Winter, Biochemistry 24, 5852-5857 (1985).
85. Fine Structure-Activity Analysis of Mutations at Position 51 of Tyrosyl-tRNA Synthetase. A.R. Fersht, A.J. Wilkinson, P. Carter and G. Winter, Biochemistry 24, 5858-5861 (1985).
86. Hydrogen Bonding in Enzymatic Catalysis Analysed by Protein Engineering. T.N.C. Wells and A.R. Fersht, Nature 316, 656-657 (1985).
87. Transition-State Stabilization in the Mechanism of Tyrosyl-tRNA Synthetase Revealed by Protein Engineering. R.J. Leatherbarrow, A.R. Fersht and G. Winter, Proc. Nat. Acad. Sci USA, 82, 7840-7844 (1985).
88. Engineering of Tyrosyl-tRNA Synthetase. H. Bedouelle, P. Carter, M.M.Y. Waye, G. Winter, D.M. Lowe, A.J. Wilkinson and A.R. Fersht, Biochimie 67, 737-743 (1985).
89. Tailoring the pH dependence of Enzyme Catalysis Using Protein Engineering. P.G. Thomas, A.J. Russell and A.R. Fersht, Nature 318, 375-376 (1985).
90. Structure and Activity of the Tyrosyl-tRNA Synthetase: The Hydrogen Bond in Catalysis and Specificity. A.R. Fersht, R.J. Leatherbarrow and T.N.C. Wells, Phil. Trans. R. Soc. Lond A, A317, 305-320 (1986).
91. Use of Binding Energy in Catalysis Analyzed by Mutagenesis of the Tyrosyl-tRNA Synthetase. T.N.C. Wells and A.R. Fersht, Biochemistry 25, 1881-1886 (1986).
92. Natural Variation of Tyrosyl-tRNA Synthetase and Comparison with Engineered Mutants. M.D. Jones, D.M. Lowe, T. Borgford and A.R. Fersht, Biochemistry 25, 1887-1891 (1986).
93. Internal Thermodynamics of Position 51 Mutants and Natural Variants of Tyrosyl-tRNA Synthetase. C.K. Ho and A.R. Fersht, Biochemistry 25, 1891-1897 (1986).
94. Molecular cloning of the gene encoding the valyl-tRNA synthetase from Bacillus stearothermophilus. N.J. Brand and A.R. Fersht, Gene 44, 139-142 (1986).
95. Protein Engineering of Homodimeric Tyrosyl-tRNA synthetase to form active Heterodimers. W.H.J. Ward, D.H. Jones and A.R. Fersht, J. Biol. Chem. 261, 9576-9578 (1986).
96. Free Energy of Hydrolysis of Tyrosyl Adenylate and Its Binding to Wild-Type and Engineered Mutant Tyrosyl-tRNA Synthetases. T.N.C. Wells, C. Ho and A.R. Fersht, Biochemistry 25, 6603-6608 (1986).
97. Quantitative Analysis of Structure-activity Relationships in Engineered Proteins by Linear Free-Energy Relationships. A. R. Fersht, R.J. Leatherbarrow and T.N.C. Wells, Nature 322, 284-286 (1986).
98. Commercial samples of subtilisin BPN’. A.J. Russell and A.R. Fersht, Nature 321, 733 (1986).
99. Hydrogen bonding in enzyme catalysis studied by protein engineering. T.N.C. Wells, R.J. Leatherbarrow and A.R. Fersht, Trans. Amer. Crystallog. Ass. 22, 63-74 (1986).
100. Binding energy and catalysis: a lesson from protein engineering of the tyrosyl-tRNA synthetase. A.R. Fersht, R.J. Leatherbarrow and T.N.C. Wells, Trends in Biochemical Sciences 11, 321-325 (1986).
101. Catalytic dissection of an enzyme active site. T.N.C. Wells and A.R. Fersht, Biochem. Soc. Trans. 14, 1219-1220 (1986).
102. The valyl-tRNA synthetase from Bacillus Stearothermophilus has considerable sequence homology with the isoleucyl-tRNA synthetase from Escherichia coli. T.J. Borgford, N.J. Brand, T.E. Gray and A.R. Fersht, Biochemistry 26, 2480-2486 (1987).
103. Electrostatic effects on modification of charged groups in the active site cleft of subtilisin by protein engineering. A.J. Russell, P.G. Thomas and A.R. Fersht, J. Mol. Biol. 193, 803-813 (1987). 104. Effects of engineering complementary charged residues into the hydrophobic subunit interface of the tyrosyl-tRNA synthetase. Appendix: Kinetics of dimeric enzymes which are in equilibrium with inactive subunits. W.H.J. Ward, D.H. Jones and A.R. Fersht, Biochemistry 26, 4131-4138 (1987).
105. Structure-activity relationships in engineered proteins: Analysis of use of binding energy by linear free energy relationships. A.R. Fersht, R.J. Leatherbarrow and T.N.C. Wells, Biochemistry 26, 6030-6038 (1987).
106. Structure-activity relationships in engineered proteins: Characterization of disruptive deletions in the -ammonium group binding of the tyrosyl-tRNA synthetase. D.M. Lowe, G. Winter and A.R. Fersht, Biochemistry 26, 6038-6043 (1987).
107. Site-directed mutagenesis in the effector site of Escherichia coli phosphofructokinase. F. T.-K. Lau, A.R. Fersht, H.W. Hellinga and P.R. Evans, Biochemistry 26, 4143-4148 (1987).
108. Conversion of allosteric inhibition to activation in phosphofructokinase by protein engineering. F. T.-K. Lau and A.R. Fersht, Nature 326, 811-812 (1987).
109. Site-directed mutagenesis reveals transition state-stabilization as a general catalytic mechanism for aminoacyl-tRNA synthetases. T.J. Borgford, T.E. Gray, N.J. Brand and A.R. Fersht, Biochemistry 26, 7246-7250 (1987).
110. The hydrogen bond in molecular recognition. A.R. Fersht, Trends Biochem. Sci. 12, 301-304 (1987).
111. Rational modification of enzyme catalysis by engineering surface charge. A.J. Russell and A.R. Fersht, Nature 328, 496-500 (1987).
112. Prediction of electrostatic effects of engineering of protein charges. M.J.E. Sternberg, F.R. Hayes, A.J. Russell, P.G. Thomas and A.R. Fersht, Nature 330, 86-88 (1987).
113. Dissection of the Structure and Activity of the Tyrosyl-tRNA Synthetase by Site-Directed Mutagenesis. A.R. Fersht, Biochemistry 26, 8031-8037 (1987).
114. Artifacts in the application of linear free energy analysis. A.R. Fersht, Protein Engineering 1, 441-446 (1987).
115. Investigation of transition state stabilization by residues His-45 and Thr-40 in the tyrosyl-tRNA synthetase. R.J. Leatherbarrow and A.R. Fersht, Biochemistry 26, 8524-8528 (1987).
116. Asymmetry of Tyrosyl-tRNA Synthetase in Solution. W.H.J. Ward and A.R. Fersht, Biochemistry 27, 1041-1049 (1988).
117. Relationships between Apparent Binding Energies Measured in Site-Directed Mutagenesis Experiments and Energetics of Binding and Catalysis. A.R. Fersht, Biochemistry 27, 1577-1580 (1988).
118. Reconstruction by Site-Directed Mutagenesis of the Transition State for the Activation of Tyrosine by the Tyrosyl-tRNA Synthetase: A Mobile Loop Envelopes the Transition State in an Induced-Fit Mechanism. A.R. Fersht, J.W. Knill-Jones, H. Bedouelle and G. Winter, Biochemistry 27, 1581-1587 (1988).
119. Tyrosyl-tRNA Synthetase Acts as an Asymmetric Dimer in Charging tRNA. A Rationale for Half-of-the-Sites Activity. W.H.J. Ward and A.R. Fersht, Biochemistry 27, 5525-5530 (1988).
120. Contribution of hydrophobic interactions to protein stability. J.T. Kellis Jr, K. Nyberg, D. Sali & A.R. Fersht, Nature 333, 784-786 (1988).
121. Assignment of Histidine Resonances in the 1H N.M.R. (500 MHz) Spectrum of Subtilisin BPN' using Site-Directed Mutagenesis. M. Bycroft and A.R. Fersht, Biochemistry 27, 7390-7394 (1988).
122. Stabilization of protein structure by interaction of -helix dipole with a charged side chain. D. Sali, M. Bycroft & A.R. Fersht, Nature 335, 740-743 (1988).
123. Kinetic Characterization of the Recombinant Ribonuclease from Bacillus amyloliquefaciens (Barnase) and Investigation of Key Residues in Catalysis by Site-Directed Mutagenesis. D. E. Mossakowska, K. Nyberg and A.R. Fersht, Biochemistry 28, 3843-3850 (1989).
124. Energetics of complementary side-chain packing in a protein hydrophobic core J.T. Kellis, Jr., K. Nyberg and A.R. Fersht, Biochemistry 28, 4914-4922 (1989).
125. Can a simple function for the dielectric response model electrostatic effects in globular proteins? A. R. Fersht and M.J. E. Sternberg, Protein engineering 2, 527-530 (1989).
126. Dissection of the effector-binding site and complementation studies of Escherichia coli phosphofructokinase using site-directed mutagenesis. F.T.-K. Lau and A.R. Fersht, Biochemistry 28, 6841-6847 (1989).
127. Protection of an unstable reaction intermediate examined with linear free energy relationships in tyrosyl-tRNA synthetase. Appendix: Statistical analysis of the linear free energy relationship. T.N.C. Wells and A.R. Fersht, Biochemistry 28, 9201-9209 (1989).
128. Mapping the transition state and pathway of protein folding by protein engineering. A. Matouschek, J. T. Kellis Jr, L. Serrano and A.R. Fersht, Nature 340, 122-126 (1989).
129. Capping and α-helix stability L. Serrano & A.R. Fersht, Nature 342, 296-299 (1989).
130. Metal ion dependence of phosphorothioate ATP analogues in the Bacillus stearothermophilus tyrosyl-tRNA synthetase reaction. G.A. Garcia, R.J. Leatherbarrow, F. Eckstein & A.R. Fersht Biochemistry 29, 1643-1648 (1990)
131. Recombinant Chymotrypsin Inhibitor 2 (CI2): Expression, Kinetic analysis of Inhibition with α-Chymotrypsin and wild-type and mutant Subtilisin BPN', and Protein Engineering to Investigate Inhibitory Specificity and Mechanism. C. Longstaff, A. F. Campbell & A. R. Fersht Biochemistry 29, 7339-7347 (1990).
132. Folding pathway enigma. A.R. Fersht, J. T. Kellis Jr, A. Matouschek and L. Serrano Nature 343, 601-602 (1990).
133. Sequential assignment of the 1H nuclear magnetic resonance spectrum of Barnase. M. Bycroft, R. N. Sheppard, F. T.-K. Lau, and A. R. Fersht Biochemistry 29, 7425-7432 (1990).
134. Transient folding intermediates characterized by protein engineering. A. Matouschek, J. T. Kellis Jr, L. Serrano, M. Bycroft and A.R. Fersht, Nature 346, 440-445 (1990). 135. Detection and characterization of a folding intermediate in barnase by NMR. Mark Bycroft, Andreas Matouschek, James T. Kellis Jr, Luis Serrano & Alan R. Fersht, Nature 346, 488-490 (1990).
136. Estimating the contribution of engineered surface electrostatic interactions to protein stability by using double-mutant cycles. Appendix: Measurement of direct electrostatic effects and other pairwise interactions from changes in unfolding energies L. Serrano, A. Horovitz, B. Avron, M. Bycroft and A.R. Fersht Biochemistry 29, 9343-9352 (1990).
137. Strategy for analysing the cooperativity of intramolecular interactions in peptides and proteins Amnon Horovitz and Alan R. Fersht J. Mol. Biol. 214, 613-617 (1990).
138. Protein engineering and the study of structure-function relationships in receptors W. H. J. Ward, D. Timms & A. R. Fersht Trends in Pharmacological Sciences 11, 280-284 (1990).
139. Strength and cooperativity of contributions of surface salt bridges to protein stability. A. Horovitz, L. Serrano, B. Avron, M. Bycroft & A. R. Fersht J. Mol. Biol. 216, 1031-1044 (1990).
140. Aromatic-aromatic interactions and protein stability: Investigation by double-mutant cycles. L. Serrano, M. Bycroft and A. R. Fersht J. Mol. Biol. 218, 465-475 (1991).
141. Physical-organic molecular biology: pathway and stability of protein folding. A. R. Fersht, A.s Matouschek, M. Bycroft, J.T. Kellis Jr. & L. Serrano Pure and Applied Chemistry 63, 187-194 (1991).
142. Linear free energy relationships in enzyme binding interactions studied by protein engineering. A. R. Fersht and T. N.C Wells Protein Engineering 4, 229-231 (1991)
143. COSMIC analysis of the major α-helix of barnase during folding. A. Horovitz, L. Serrano & A. R. Fersht J. Mol. Biol. 219, 5-9 (1991).
144. Stabilization of Barnase by an Interaction Between two Oppositely Charged Side Chains. D. Sali, M. Bycroft and A. R. Fersht Techniques in Protein Chemistry II 28, 295-303 (1991).
145. Kinetic and thermodynamic properties of wild-type and engineered mutants of tyrosyl-tRNA synthetase analyzed by pyrophosphate-exchange kinetics. T. N. C. Wells, J. W. Knill-Jones, T. E. Gray & A. R. Fersht Biochemistry 30, 5151-5156 (1991).
146. Correlations between kinetic and X-ray analyses of engineered enzymes: crystal structures of mutants Cys-Gly-35 and Tyr-Phe-34 of tyrosyl-tRNA synthetase. M. D. Fothergill and A. R. Fersht Biochemistry 30, 5157-5164 (1991).
147. Pathway and stability of protein folding. Alan R. Fersht, Mark Bycroft, Amnon Horowitz, James T. Kellis Jr., Andreas Matouschek and Luis Serrano Phil. Trans. R. Soc. Lond B 332, 171-176 (1991).
148. Fluorescence spectrum of barnase: contributions of three tryptophan residues and a histidine related pH dependence. R.Loewenthal, J. Sancho and A. R. Fersht Biochemistry 30, 6775-6779 (1991).
149. Surface electrostatic interactions contribute little to stability of barnase. D. Sali, M. Bycroft and A.R. Fersht, J. Mol. Biol 220, 779-788 (1991).
150. Determination of the three-dimensional solution structure of barnase using nuclear magnetic resonance spectroscopy. M. Bycroft, S. Ludvigsen, A. R. Fersht and F.M. Poulsen, Biochemistry 30, 8697-8701 (1991). 151. Mapping transition states of protein unfolding by protein engineering of ligand- binding sites. J. Sancho, E. M. Meiering and A. R. Fersht, J. Mol. Biol. 221, 1007-1014 (1991).
152. Folding of Chymotrypsin Inhibitor 2. 1. Evidence for a Two-State Transition. Sophie E. Jackson & Alan R. Fersht, Biochemistry 30, 10428-10435 (1991).
153. Folding of Chymotrypsin Inhibitor 2. 2. Influence of Proline Isomerization on the Folding Kinetics and Thermodynamic Characterization of the Transition State of Folding. Sophie E. Jackson & Alan R. Fersht, Biochemistry 30, 10436-10443 (1991).
154. Cooperativity in ATP Hydrolysis by GroEL is increased by GroES. Tamara E. Gray and Alan R. Fersht, FEBS Letts 292, 254-258 (1991).
155. Characterization of phosphate binding in the active site of barnase by site-directed mutagenesis and NMR. E. M. Meiering, M. Bycroft and A. R. Fersht, Biochemistry 30, 11348-11356 (1991).
156. Co-operative Interactions During Protein Folding. A. Horovitz & A.R. Fersht, J. Mol. Biol. 224, 733-740 (1992).
157. Dissection of an Enzyme by Protein Engineering: the N- and C-Terminal Fragments of Barnase Form a Native-Like Complex with Restored Enzymatic Activity. J. Sancho and A. R. Fersht, J. Mol. Biol. 224, 741-747 (1992).
158. An N-Terminal Fragment of Barnase has Residual Helical Structure Similar to that in a Refolding Intermediate. J. Sancho, J. L. Neira and A. R. Fersht, J. Mol. Biol. 224, 749-758 (1992).
159. Histidine-Aromatic Interactions in Barnase: Elevation of Histidine pKa and Contribution to Protein Stability. R. Loewenthal, J. Sancho and A. R. Fersht, J. Mol. Biol. 224, 759-770 (1992).
160. The Folding of an Enzyme I: Theory of Protein Engineering Analysis of Stability and Pathway of Protein Folding. A. R. Fersht, A. Matouschek and L. Serrano, J. Mol. Biol. 224, 771-782 (1992).
161. The Folding of an Enzyme II. Substructure of Barnase and the Contribution of Different Interactions to Protein Stability. L. Serrano, J. T. Kellis, Jr., P. Cann, A. Matouschek and A. R. Fersht, J. Mol. Biol. 224, 783-804 (1992).
162. The Folding of an Enzyme III. Structure of the Transition State for Unfolding of Barnase Analysed by a Protein Engineering Procedure. L. Serrano, A. Matouschek and A. R. Fersht, J. Mol. Biol. 224, 805-818 (1992).
163. The Folding of an Enzyme IV. Structure of an Intermediate in the Refolding of Barnase Analysed by a Protein Engineering Procedure. A. Matouschek, L. Serrano and A. R. Fersht, J. Mol. Biol. 224, 819-835 (1992).
164. The Folding of an Enzyme V. H/2H Exchange-Nuclear Magnetic Resonance Studies on the Folding Pathway of Barnase: Complementarity to and Agreement with Protein Engineering Studies. A. Matouschek, L. Serrano, E. M. Meiering, M. Bycroft and A. R. Fersht, J. Mol. Biol. 224, 837-845 (1992).
165. The Folding of an Enzyme VI. The Folding Pathway of Barnase: Comparison with Theoretical Models. L. Serrano, A. Matouschek and A. R. Fersht, J. Mol. Biol. 224, 847-859 (1992). 166. Determination of the Excited-State Lifetimes of the Tryptophan Residues in Barnase, via Multifrequency Phase Fluorometry of Tryptophan Mutants. K. Willaert, R. Loewenthal, J. Sancho, M. Froeyen, A. R. Fersht and Y. Engelborghs Biochemistry 31, 711-716 (1992). 167. Histidine residues at the N- and C-termini of α helices: perturbed pKas and protein stability. J. Sancho, L. Serrano and A. R. Fersht Biochemistry 31, 2253-2258 (1992).
168. Effect of alanine versus glycine in α-helices on protein stability. L. Serrano, J.L. Neira, J. Sancho and A.R. Fersht Nature 356, 453-455 (1992).
169. Effect of Active Site Residues in Barnase on Activity and Stability. E. M. Meiering, L. Serrano and A. R. Fersht J. Mol. Biol.225, 585-589 (1992).
170. Barnase has Subsites that Give Rise to Large Rate Enhancements. A. G. Day, D. Parsonage, S. Ebel, T. Brown and A. R. Fersht, Biochemistry 31, 6390-6395 (1992).
171. Mutation of asparagine-111 to ribulose-bisphosphate carboxylase/oxgenase from Rhodospirillum rubrum alters the CO2/O2 specificity. P. Chène, A. Day and A. R. Fersht, J. Mol. Biol. 225, 891-896 (1992).
172. -Helix Stability in Proteins I. Empirical Correlations Concerning Substitution of Side Chains at the N- and C-Caps and the Replacement of Alanine by Glycine or Serine at Solvent-Exposed Surfaces. L. Serrano, J. Sancho, M. Hirshberg and A. R. Fersht, J. Mol. Biol. 227, 544-559 (1992).
173. -Helix Stability in Proteins II. Factors that Influence Stability at an Internal Position. A. Horovitz, J. M. Matthews and A. R. Fersht, J. Mol. Biol. 227, 560-568 (1992).
174. Protein Engineering. A. R. Fersht and G. Winter, Trends in Biochemical Sciences 17, 292-294 (1992). 175. Bricolage Génétique et Photosynthèse. P. Chène, A. G. Day and A. R. Fersht, La Recherche 246, 1066-1067 (1992).
176. Pathway of Protein Folding. A. R. Fersht, A. Matouschek, J. Sancho, L. Serrano and S. Vuilleumier Faraday Discussion Meeting, 93, 183-193 (1992).
177. Folding of Subtilisin BPN': Characterization of a Folding Intermediate. J. Eder, M. Rheinnecker and A. R. Fersht Biochemistry 32, 18-26 (1993).
178. Engineering a Novel Specificity in Subtilisin BPN'. M. Rheinnecker, G. Baker, J. Eder and A. R. Fersht Biochemistry 32, 1199-1203 (1993). 179. Modification of the amino acid specificity of tyrosyl-tRNA synthetase by protein engineering. G. de Prat Gay, H. W. Duckworth and A. R. Fersht FEBS Letters 318, 167-171 (1993).
180. The rôle of phenylalanine-327 in the closure of loop 6 of ribulosebisphosphate carboxylase/oxygenase from Rhodospirillum rubrum. A. G. Day, P. Chène and A. R. Fersht Biochemistry 32, 1940-1944 (1993).
181. Engineered disulfide bonds as probes of the folding pathway of barnase: Increasing the stability of proteins against the rate of denaturation. J. Clarke and A. R. Fersht Biochemistry 32, 4322-4329 (1993).
182. The interaction of barnase with its polypeptide inhibitor barstar studied by protein engineering. G. E. Schreiber and A. R. Fersht Biochemistry 32, 5145-5150 (1993).
183. The reaction of modified and unmodified tRNAtyr substrates with tyrosyl trna-synthetase (Bacillus stearothermophilus). J. M. Avis, A. G. Day, G. A. Garcia and A. R. Fersht Biochemistry 32, 5312-5320 (1993).
184. Use of binding energy in catalysis: optimisation of rate in a multistep reaction. J. M. Avis and A. R. Fersht Biochemistry 32, 5321-5326 (1993).
185. Long range surface charge-charge interactions in proteins: Comparison of experimental results with calculations from a theoretical method. R. Loewenthal, J. Sancho, T. Reinikainen and A. R. Fersht J. Mol. Biol. 232, 574-583 (1993).
186. Refolding of barnase in the presence of GroE. T. E. Gray and A. R. Fersht J. Mol. Biol. 232, 1197-1207 (1993).
187. Application of Physical-Organic chemistry to engineered mutants of proteins: Hammond Postulate behaviour in the transition state of protein folding. A. Matouschek and A. R. Fersht Proc. Natl. Acad. Sci. U.S.A. 90, 7814-7818 (1993).
188. Protein folding and stability: the pathway of folding of barnase. The Sixth Datta Lecture. A. R. Fersht, FEBS Letters 325, 5-16 (1993).
189. Folding of Subtilisin BPN': The Role of the Pro-Sequence. J. Eder, M. Rheinnecker and A. R. Fersht J. Mol. Biol. 233, 293-304 (1993). 190. Step-wise mutation of barnase to binase: A procedure for engineering increased stability of proteins and an experimental analysis of the evolution of protein stability. L. Serrano, A. G. Day and A. R. Fersht J. Mol. Biol. 233, 305-312 (1993).
191. Identification of the Barstar Binding Site of Barnase by NMR Spectroscopy and Hydrogen-Deuterium Exchange. D. N. M. Jones, M. Bycroft, M. J. Lubienski and A. R. Fersht FEBS Letts 331, 165-172 (1993).
192. Refolding of barnase mutants and pro-barnase in the presence and absence of GroEL. T. E. Gray, J. Eder, M. Bycroft, A. G. Day and A. R. Fersht EMBO Journal 12, 4145-4150 (1993).
193. Circular Dichroism Studies of Barnase and its Mutants: Characterization of the Contribution of Aromatic Side Chains. S. Vuilleumier, J. Sancho, R. Loewenthal and A. R. Fersht Biochemistry 32, 10303-10313 (1993).
194. The Structure and Dynamics of Barnase Complexed with 3'GMP Studied by NMR Spectroscopy. E. M. Meiering, M. Bycroft, M. J. Lubienski and A. R. Fersht Biochemistry 32, 10975-10987 (1993).
195. The refolding of cis and trans peptidyl-prolyl isomers of Barstar. G. Schreiber and A. R. Fersht Biochemistry 32, 11195-11203 (1993).
196. The Contribution of Intra-Loop Hydrogen Bonds to Protein Stability Revealed by Two Mutant Crystal Structures of Barnase. Y. W. Chen, K. Henrick and A. R. Fersht Advances in Gene Technology: Protein Engineering and Beyond (1993).
197. Protein Stability: Experimental Data from Protein Engineering. A. R. Fersht, S. E. Jackson and L. Serrano Proc.Roy.Soc. 345, 141-151 (1993).
198. The Effect of Cavity Creating Mutations in the Hydrophobic Core of Chymotrypsin Inhibitor 2. S. E. Jackson, M. Moracci, N. elMasry, C. Johnson and A. R. Fersht Biochemistry 32 11259-11269 (1993).
199. Structure of the Hydrophobic Core in the Transition State for Folding of Chymotrypsin Inhibitor 2: A Critical Test of the Protein Engineering Method of Analysis. S. E. Jackson, N. elMasry and A. R. Fersht Biochemistry 32 11270-11278 (1993).
200. Crystal Structural Analysis of Mutations in the Hydrophobic Cores of Barnase. A. M. Buckle, K. Henrick and A. R. Fersht J. Mol. Biol. 234, 847-860 (1993).
201. The Contribution of Buried Hydrogen Bonds to Protein Stability: The Crystal Structures of Two Barnase Mutants. Y. W. Chen, A. R. Fersht and K. Henrick J. Mol. Biol. 234, 1158-1170 (1993).
202. Assignment of the Backbone 1H and 15N NMR Resonances and Secondary Structure Characterization of Barstar. M. J. Lubienski, M. Bycroft, D. N. M. Jones and A. R. Fersht FEBS Letters 332, 81-87 (1993).
203. Principles of protein stability derived from protein engineering experiments A. R. Fersht and L. Serrano Current Opinion in Structural Biology 3, 75-83 (1993).
204. Rationally designing the accumulation of a folding intermediate of barnase by protein engineering. J. M. Sanz and A. R. Fersht Biochemistry 32, 13584-13592 (1993).
205. The Involvement of Threonine 234 in Catalysis of Tyrosyl Adenylate Formation by Tyrosyl-tRNA Synthetase E. A. First and A. R. Fersht Biochemistry 32, 13644-13650 (1993).
206. Mutation of Lysine 233 to Alanine Introduces Positive Cooperativity into Tyrosyl-tRNA Synthetase E. A. First and A. R. Fersht Biochemistry 32, 13651-13657 (1993).
207. Mutational and Kinetic Analysis of a Mobile Loop in Tyrosyl-tRNA Synthetase E. A. First and A. R. Fersht Biochemistry 32, 13658-13663 (1993).
208. The Contribution of Long-Range Electrostatic Interactions to the Stabilization of the Catalytic Transition State of the Serine Protease Subtilisin BPN' S. E. Jackson and A. R. Fersht Biochemistry 32, 13909-13916 (1993).
209. Local breathing and global unfolding in hydrogen-exchange of barnase and its relationship to protein folding pathways. J. Clarke, A. M. Hounslow, M. Bycroft and A. R. Fersht, Proc. Natl. Acad. Sci. U.S.A. 90 9837-9841 (1993).
210. Hydrolysis of small peptide substrates parallels binding of chymotrypsin inhibitor 2 for mutants of subtilisin BPN'. J. Eder, M. Rheinnecker and A. R. Fersht FEBS 335 349-352 (1993).
211. Contribution of a proline residue and a salt bridge to the stability of a type I reverse turn in chymotrypsin inhibitor-2. G. de Prat Gay, C. M. Johnson and A. R. Fersht, Protein Engineering 7, 103-108 (1994).
212. Variants of Subtilisin BPN' with Altered Specificity Profiles. M. Rheinnecker, J. Eder, P. S. Pandey and A. R. Fersht, Biochemistry 33, 221-225 (1994).
213. Direct Observation of Better Hydration at the N-Terminus of an α-Helix with Glycine rather than Alanine as N-Cap . Y. Harpaz, N. elMasry, A. R. Fersht and K. Henrick Proc. Natl. Acad. Sci. U.S.A. 91, 311-315 (1994).
214. Subsite Binding in an RNase: Structure of a Barnase-Tetranucleotide Complex at 1.76 Å Resolution. A. M. Buckle and A. R. Fersht Biochemistry 33, 1644-1653 (1994).
215. Quantitative Determination of Helical Propensities from Trifluroethanol-Titration Curves. A. Jasanoff and A. R. Fersht Biochemistry 33, 2129-2135 (1994).
216. Folding of Barnase in Parts. A. D. Kippen, J. Sancho and A. R. Fersht Biochemistry 33, 3778-3786 (1994).
217. A Calorimetric Study of the Thermal Stability of Barnase and Its Interaction with 3'GMP. Jose C. Martínez, Mohamed El Harrous, Vladimir V. Filiminov, Pedro L .Mateo and Alan R. Fersht Biochemistry 33, 3919-3926 (1994).
218. Insertion in barnase of a loop sequence from ribonuclease T1: Exploring sequence and structure alignments by protein engineering. S. Vuilleumier and A. R. Fersht Europ J. Biochemistry 221, 1003-1012 (1994).
219. Detection of an Intermediate in the Folding of the (βα)8-barrel (Phosphoribosyl) anthranilate Isomerase from Escherichia coli A. Jasanoff, B. Davis and A. R. Fersht Biochemistry 33, 6350-6355 (1994).
220. Mutational Analysis of the N-Capping Box of the α-Helix of Chymotrypsin Inhibitor 2 N. F. elMasry and A. R. Fersht Protein Engineering 7, 777-782 (1994).
221. Generation of a family of protein fragments for structure-folding studies. I: Folding complementation of two fragments of chymotrypsin inhibitor-2 formed by cleavage at its unique methionine residue. G. de Prat Gay and A. R. Fersht Biochemistry 33, 7957-7963 (1994).
222. Generation of a family of protein fragments for structure-folding studies. II. Kinetics of association of the two chymotrypsin inhibitor-2 fragments. G. de Prat Gay, J. Ruiz-Sanz and A. R. Fersht Biochemistry 33, 7964-7970 (1994).
223. Measurement of barnase refolding rate constants under denaturing conditions J. M. Sanz and A. R. Fersht FEBS Letters 344, 216-220 (1994).
224. Pathway and Stability of Protein Folding. A. R. Fersht, Biochemical Society Transactions, 267-273 (1994).
225. Stability and Solvation of Thr/Ser to Ala and Gly Mutations at the N-Cap of α-Helices Y. W. Chen and A. R. Fersht FEBS Letters 347, 304-309 (1994).
226. Thermodynamic Study of the Acid Denaturation of Barnase and its Dependence on Ionic Strength: Evidence for Residual Electrostatic Interactions in the Acid/Thermally Denatured State. M. Oliveberg, S. Vuilleumier and A. R. Fersht Biochemistry 33, 8826-8832 (1994).
227. Three-Dimensional Solution Structure and 13C Assignments of Barstar Using Nuclear Magnetic Resonance Spectroscopy. M. J. Lubienski, M. Bycroft, S. M. V. Freund and A. R. Fersht Biochemistry 33, 8866-8877 (1994).
228. Protein-Protein Recognition: Crystal Structural Analysis of a Barnase-Barstar Complex at 2.0Å Resolution. A. M. Buckle, G. Schreiber and A. R. Fersht Biochemistry 33, 8878-8889 (1994).
229. Extrapolation of Kinetic and Equilibrium Data for the Unfolding of Barnase in Urea Solutions to Water A. Matouschek, J. M. Matthews, C. M. Johnson and A. R. Fersht Protein Engineering 7, 1089-1095 (1994).
230. Structural studies on peptides corresponding to mutants of the major α-helix of Barnase A. D. Kippen, V. L. Arcus and A. R. Fersht Biochemistry 33, 10013-10021 (1994).
231. Towards solving the folding pathway of barnase: The complete backbone 13C, 15N and 1H NMR assignments of its pH-denatured state V. L. Arcus, S. Vuilleumier, S. V. Freund, M. Bycroft and A. R. Fersht Proc. Natl. Acad. Sci. U.S.A. 91, 9412-9416 (1994).
232. The A-state of Barnase J. M. Sanz, C. M. Johnson and A. R. Fersht Biochemistry 33, 11189-11199 (1994).
233. The structure of the transition state for the folding/unfolding of the barley chymotrypsin inhibitor 2 and its implications for mechanisms of protein folding D. E. Otzen, L. S. Itzhaki, N. F. elMasry, S. E. Jackson and A. R. Fersht Proc. Natl. Acad. Sci. U.S.A. 91 10422-10425 (1994).
234. Single versus parallel pathways of protein folding and fractional formation of structure in the transition state A. R. Fersht, L. S. Itzhaki, N. F. elMasry, J. M. Matthews and D. E. Otzen Proc. Natl. Acad. Sci. U.S.A. 91, 10426-10429 (1994).
235. The Contribution of Residues in the Reactive Site Loop of Chymotrypsin Inhibitor 2 to Protein Stability & Activity S. E. Jackson and A. R. Fersht Biochemistry 33, 13880-13887 (1994).
236. Stability and Function: Two Constraints in the Evolution of Barstar and Other Proteins G. Schreiber, A. M. Buckle and A. R. Fersht Structure 2, 945-951 (1994).
237. The structure of the transition state for the association of two fragments of the barley chymotrypsin inhibitor 2 to generate native-like protein: Implications for mechanisms of protein folding G. de Prat Gay, J. Ruiz-Sanz, B. Davis and A. R. Fersht Proc. Natl. Acad. Sci. U.S.A. 91, 10943-10946 (1994).
238. Analysis of the mechanism of assembly of cleaved barnase from two peptide fragments and its relevance to the folding pathway of uncleaved barnase A. D. Kippen and A. R. Fersht Biochemistry 34, 1464-1468 (1995).
239. Protein fragments as models for events in protein folding pathways: Protein engineering analysis of the association of two complementary fragments of the barley Chymotrypsin Inhibitor 2 (CI2) J. Ruiz-Sanz, G. de Prat Gay, D. E. Otzen and A. R. Fersht Biochemistry 34, 1695-1701 (1995).
240. Increased Rates of tRNA Charging Through Modification of the Enzyme-Aminoacyl-Adenylate Complex of Phenylalanyl-tRNA Synthetase M. Ibba, C. M. Johnson, H. Hennecke and A. R. Fersht FEBS Letters 358, 293-296 (1995).
241. Backbone Dynamics of Chymotrypsin Inhibitor 2: The Effect of Breaking the Active Site Bond and its Implications for the Mechanism of Inhibition of Serine Proteases G. L. Shaw, B. J. Davis, J. H. Keeler and A. R. Fersht Biochemistry 34, 2225-2233 (1995).
242. Crystallographic Analysis of Phe Leu Substitution in the Hydrophobic Core of Barnase Y. W. Chen, A. R. Fersht and K. Henrick Acta Cryst. D51, 220-231 (1995).
243. Energetics of Protein-Protein Interactions: Single and Double Mutant Cycle Analysis of the Barnase-Barstar Interface by Single Mutations and Double Mutant Cycles G. Schreiber and A. R. Fersht J. Mol. Biol. 248, 478-486 (1995).
244. Analysis of the Role of the KMSKS Loop in the Catalytic Mechanism of the Tyrosyl-tRNA Synthetase Using Multimutant Cycles E. A. First and A. R. Fersht Biochemistry 34, 5030-5043 (1995).
245. A Calorimetric Study of the Thermal Stability of Barstar and its Interaction with Barnase J. C. Martínez, V. V. Filimonov, P. L. Mateo, G. Schreiber and A. R. Fersht Biochemistry 34, 5224-5233 (1995).
246. Mapping the structures of transition states and intermediates in folding: delineation of pathways at high resolution A. R. Fersht, Phil. Trans. Roy. Soc. Lond. B 348, 11-15 (1995).
247. Side-chain determinants of β-sheet stability D. E. Otzen and A. R. Fersht Biochemistry 34, 5718-5724 (1995).
248. Protein Stability as a Function of Denaturant Concentration: The Thermal Stability of Barnase in the Presence of Urea C. M. Johnson and A. R. Fersht Biochemistry 34, 6795-6804 (1995).
249. Exploring the energy surface of protein folding by structure-reactivity relationships and engineered proteins: Observation of Hammond behaviour for the gross structure of the transition state and anti-Hammond behaviour for structural elements for unfolding/folding of barnase J. M. Matthews and A. R. Fersht Biochemistry 34, 6805-6814 (1995).
250. Folding of a nascent polypeptide chain in vitro: Co-operative formation of structure in a protein module G. de Prat Gay, J. Ruiz-Sanz, J. L. Neira, L. S. Itzhaki and A. R. Fersht Proc. Natl. Acad. Sci. U.S.A. 92, 3683-3686 (1995).
251. The Relationship Between Equilibrium Amide Proton Exchange Behaviour and the Folding Pathway of Barnase S. Perrett, J. Clarke, A. M. Hounslow and A. R. Fersht Biochemistry 34, 9288-9298 (1995).
252. The pKA-Values of Carboxyl Groups in the Native and Denatured States of Barnase: The pKA-Values of the Denatured State are on average 0.4 Units Lower than those of Model Compounds M. Oliveberg, V. L. Arcus and A. R. Fersht Biochemistry 34, 9424-9433 (1995).
253. The folding of GroEL-bound barnase as a model for chaperonin-mediated protein folding F. J. Corrales and A. R. Fersht Proc. Natl. Acad. Sci. U.S.A. 92, 5326-5330 (1995).
254. Characterization of in vitro oxidized barstar C. Frisch, G. Schreiber and A. R. Fersht FEBS Letters 370 273-277 (1995).
255. Disulfide Mutants of Barnase. I. Changes in Stability and Structure Assessed by Biophysical Methods and X-ray Crystallography J. Clarke, K. Henrick and A. R. Fersht J. Mol. Biol. 253, 493-504 (1995).
256. Disulfide Mutants of Barnase. II. Changes in Structure and Local Stability Identified by Hydrogen Exchange J. Clarke, A. M. Hounslow and A. R. Fersht J. Mol. Biol. 253, 505-513 (1995).
257. Structural factors contributing to the hydrophobic effect: the partly exposed hydrophobic minicore in chymotrypsin inhibitor 2 D. E. Otzen, M. Rheinnecker and A. R. Fersht Biochemistry 34, 13051-13058 (1995).
258. Negative Activation Enthalpies in the Kinetics of Protein Folding M. Oliveberg, Y. J. Tan and A. R. Fersht Proc. Natl. Acad. Sci. U.S.A. 92 8926-8929 (1995).
259. Movement of the position of the transition state in protein folding A. Matouschek, D. E. Otzen, L. S. Itzhaki, S. E. Jackson and A. R. Fersht Biochemistry 34, 13656-13662 (1995).
260. Nature and consequences of GroEL-protein interactions L. S. Itzhaki, D. E. Otzen and A. R. Fersht Biochemistry 34, 14581-14587 (1995).
261. Submillisecond events in protein folding B. Nolting, R. Golbik and A. R. Fersht Proc. Natl. Acad. Sci. U.S.A. 92, 10668-10672 (1995).
262. The structure of the transition state for folding of chymotrypsin inhibitor 2 analysed by protein engineering methods: Evidence for a nucleation-condensation mechanism for protein folding L. S. Itzhaki, D. E. Otzen and A. R. Fersht J. Mol. Biol. 254, 260-288 (1995).
263. Search for nucleation sites in smaller fragments of chymotrypsin inhibitor 2 L. S. Itzhaki, J. L. Neira, J. Ruiz-Sanz, G. de Prat Gay and A. R. Fersht J. Mol. Biol. 254, 289-304 (1995).
264. A comparison of the pH-, urea, and temperature-denatured states of barnase by heteronuclear NMR: Implications for the initiation of protein folding V. L. Arcus, S. Vuilleumier, S. M. V. Freund, M. Bycroft and A. R. Fersht J. Mol. Biol. 254, 305-321 (1995).
265. Conformational pathway of the polypeptide chain of chymotrypsin inhibitor-2 growing from its N-terminus in vitro G. de Prat Gay, J. Ruiz-Sanz, J. L. Neira, F. J. Corrales, D. E. Otzen, A. G. Ladurner and A. R. Fersht J. Mol. Biol. 254, 968-979 (1995).
266. Perturbed pKA-values in the Denatured States of Proteins Y. J. Tan, M. Oliveberg, B. Davis and A. R. Fersht J. Mol. Biol. 254, 980-992 (1995).
267. Optimization of rates of protein folding: The nucleation-condensation mechanism and its implications A. R. Fersht, Proc. Natl. Acad. Sci. U.S.A. 92, 10869-10873 (1995).
268. Structure of the transition state for folding of a protein derived from experiment and simulation V. Daggett, A. Li, L. S. Itzhaki, D. E. Otzen and A. R. Fersht J. Mol. Biol. 257, 430-440 (1996).
269. Catalysis of Amide Protein Exchange by Molecular Chaperones GroEL and SecB R. Zahn, S. Perrett, G. Stenberg and A. R. Fersht, Science 271, 642-645 (1996).
270. Formation of Electrostatic Interactions on the Protein-Folding Pathway M. Oliveberg and A. R. Fersht Biochemistry 35, 2726-2737 (1996).
271. Thermodynamics of Transient Conformations in the Folding Pathway of Barnase: Reorganization of the Folding Intermediate at low pH. M. Oliveberg and A. R. Fersht Biochemistry 35, 2738-2749 (1996).
272. The structural and energetic responses to cavity-creating mutations in hydrophobic cores: observation of a buried water molecule and the hydrophilic nature of such hydrophobic cavities A. M. Buckle, P. Cramer and A. R. Fersht Biochemistry 35, 4298-4305 (1996).
273. Towards a mechanism for GroEL-GroES chaperone activity: an "ATPase-gated and -pulsed folding and annealing cage" F. J. Corrales and A. R. Fersht Proc. Natl. Acad. Sci. U.S.A. 93, 4509-13 (1996).
274. Rapid, electrostatically assisted, association of proteins G. Schreiber and A. R. Fersht Nature Structural Biology 3, 427-431 (1996).
275. The Importance of Two Buried Salt-Bridges in the Stability and Folding Pathway of Barnase A. C. Tissot, S. Vuilleumier and A. R. Fersht Biochemistry 35, 6786-6794 (1996).
276. A New Approach to the Study of Transient Protein Conformations: The Formation of a Semi-Buried Salt Link in the Folding Pathway of Barnase M. Oliveberg and A. R. Fersht Biochemistry 35, 6795-6805 (1996).
277. Active barnase variants with completely random hydrophobic cores D. D. Axe, N. W. Foster and A. R. Fersht Proc. Natl. Acad. Sci. USA 93, 5590-5594 (1996).
278. Towards the complete structural characterization of a protein folding pathway: The structures of the denatured, transition and native states for the association/folding of two complementary fragments of cleaved Chymotrypsin Inhibitor 2. Direct evidence for a nucleation-condensation mechanism J. L. Neira, B. Davis, G. de Prat Gay, A. G. Ladurner, A. M. Buckle and A. R. Fersht Folding and Design 1, 189-207 (1996).
279. An NMR Study on the -Hairpin Region of Barnase J. L. Neira and A. R. Fersht Folding & Design 1, 231-241 (1996).
280. Cold Denaturation of Barstar: 1H, 15N, and 13C NMR Assignment and Characterisation of Residual Structure K.-B. Wong, S. M. V. Freund and A. R. Fersht J. Mol. Biol. 259, 805-818 (1996).
281. An Evaluation of the Use of Hydrogen Exchange at Equilibrium to Probe Intermediates on the Protein Folding Pathway J. Clarke and A. R. Fersht Folding & Design 1, 243-254 (1996).
282. Kinetic Significance of GroEL14•(GroES7)2 Complexes in Molecular Chaperone Activity F. J. Corrales and A. R. Fersht Folding & Design 1, 265-273 (1996). 283. Conformational States Bound by the Molecular Chaperones GroEL and SecB: A Hidden Unfolding (Annealing) Activity R. Zahn, S. Perrett and Alan R. Fersht J. Mol. Biol 261, 43-61 (1996).
284. Initiation Sites of Protein Folding by NMR Analysis S. M. V. Freund, K.-B. Wong and A. R. Fersht Proc. Natl. Acad. Sci. USA 93, 10600-10603 (1996).
285. Chaperone Activity and Structure of Monomeric Polypeptide Binding Domains of GroEL R. Zahn, A. M. Buckle, S. Perrett, C. M. Johnson, F. J. Corrales, R. Golbik and A. R. Fersht Proc. Natl. Acad. Sci. USA 93, 15024-15029 (1996).
286. Titration Properties and Thermodynamics of the Transition State for Folding: Comparison of Two-State and Multi-State Folding Pathways Y.-J. Tan, M. Oliveberg and A. R. Fersht J. Mol. Biol. 264, 377-389 (1996).
287. The Folding Pathway of a Protein at High Resolution from Microseconds to Seconds B. Nölting, R. Golbik, J.-L. Neira, A. S. Soler-Gonzalez, G. Schreiber and A. R. Fersht Proc. Natl. Acad. Sci. USA 94, 826-830 (1997).
288. Thermodynamics of the Interaction of Barnase and Barstar: Changes in Free Energy versus Changes in Enthalpy on Mutation Christian Frisch, Gideon Schreiber, Christopher M. Johnson and Alan R. Fersht J. Mol. Biol. 267, 696-706 (1997).
289. Fluorescence Properties of a Tryptophan Residue in an Aromatic Core of the Protein Subunit of Ribonuclease P from Escherichia coli V. Gopalan, R. Golbik, G. Schreiber, A. R. Fersht and S. Altman J. Mol. Biol. 267 765-769 (1997).
290. Following Co-operative Formation of Secondary and Tertiary Structure in a Single Protein Module J. L. Neira, L. S. Itzhaki, A. G. Ladurner, B. Davis, G. de Prat Gay and A. R. Fersht J. Mol. Biol. 268, 185-197 (1997).
291. Thermodynamics of Denaturation of Mutants of Barnase with Disulfide Crosslinks C. M. Johnson, M. Oliveberg, J. Clarke and A. R. Fersht J. Mol. Biol. 268, 198-208 (1997).
292. NMR 15N Relaxation and Structural Studies Reveal Slow Conformational Exchange in Barstar C40/82A K.-B. Wong, A. R. Fersht and S. M. V. Freund J.Mol.Biol. 268, 494-511 (1997).
293. Non-Sequential Unfolding of the / Barrel Protein Indole-3-Glycerol-Phosphate Synthase M. M. Sánchez del Pino and A. R. Fersht Biochemistry 36, 5560-5565 (1997).
294. A Structural Model for GroEL-Polypeptide Recognition A. M. Buckle, R. Zahn and A. R. Fersht Proc. Natl. Acad. Sci. USA 94, 3571-3575 (1997).
295. Refolding chromatography with immobilized mini-chaperones Myriam M. Altamirano, Ralph Golbik, Ralph Zahn, Ashley M. Buckle and Alan R. Fersht Proc. Natl. Acad. Sci. USA 94, 3576-3578 (1997).
296. The Rate of Isomerisation of Peptidyl-Proline Bonds as a Probe for Interactions in the Physiological Denatured State of CI2 Y.-J. Tan, M. Oliveberg, D. E. Otzen and A. R. Fersht J.Mol.Biol. 269, 611-622 (1997).
297. Importance of Electrostatic Interactions in the Rapid Binding of Polypeptides to Chaperones GroEL and SecB S. Perrett, R. Zahn, G. Stenberg and A. R. Fersht J. Mol. Biol. 269, 892-901 (1997). 298. Circular Dichroism of Denatured Barstar Suggests Residual Structure B. Nölting, R. Golbik, A. Soler-González and A. R. Fersht Biochemistry 36, 9899-9905 (1997).
299. Hydrogen Exchange in Chymotrypsin Inhibitor 2 Probed by Denaturants and Temperature L. S. Itzhaki, J. L. Neira and A. R. Fersht J. Mol. Biol. 270, 89-98 (1997).
300. Hydrogen Exchange in Chymotrypsin Inhibitor 2 Probed by Mutagenesis J. L. Neira, L. S. Itzhaki, D. E. Otzen, B. Davis and A. R. Fersht J. Mol. Biol. 270, 99-110 (1997). 301. The Role of Glu 73 of Barnase in Catalysis and the Binding of Barstar G. Schreiber, C. Frisch and A. R. Fersht J. Mol. Biol. 270, 111-122 (1997).
302. Role of Isoleucine-164 at the Active Site of Rubisco from Rhodospirillum rubrum P. Chène, A. G. Day and A. R. Fersht Biochem. & Biophys. Research Communications 232, 482-486 (1997).
303. Is Hydrogen Exchange at Equilibrium a Short Cut to Analyse Folding Pathways? J. Clarke, L. S. Itzhaki and A. R. Fersht TIBS 22, 284-287 (1997).
304. Helix Stability in Barstar Peptides A. S. Soler-González and A. R. Fersht European Journal of Biochemistry 249, 724-732 (1997).
305. Complementation of Peptide Fragments of the Single Domain Protein Chymotrypsin Inhibitor 2 A. G. Ladurner, L. Itzhaki, G. de Prat Gay and A. R. Fersht J. Mol. Biol. 273, 317-329 (1997).
306. Glutamine, Alanine or Glycine Repeats Inserted into the Loop of a Protein Have Minimal Effects on Stability and Folding Rates A. G. Ladurner and A. R. Fersht J. Mol. Biol. 273, 330-337 (1997).
307. Folding of Barnase in the Presence of the Molecular Chaperone SecB G. Stenberg and A. R. Fersht J. Mol. Biol. 274, 268-275 (1997).
308. Characterization of Residual Structure in the Thermally Denatured State of Barnase by Simulation and Experiment: Description of the Folding Pathway C. J. Bond, K.-B. Wong, J. Clarke, A. R. Fersht and V. Daggett Proc. Natl. Acad. Sci. USA 94, 13409-13413 (1997).
309. Thermodynamic Stability of Wild-Type and Mutant p53 Core Domain A. N. Bullock, J. Henckel, B. S. DeDecker, C. M. Johnson, P. V. Nikolova, M. R. Proctor, D. P. Lane and A. R. Fersht Proc. Natl. Acad. Sci. USA 94, 14338-14342 (1997).
310. Strain in the Folding Nucleus of Chymotrypsin Inhibitor 2 A. G. Ladurner, L. S. Itzhaki & A. R. Fersht Folding & Design 2, 363-368 (1997).
311. Thermodynamic stability and folding of GroEL minichaperones R. Golbik, R. Zahn, S. E. Harding and A. R. Fersht J. Mol. Biol. 276, 505-515 (1998).
312. Folding Intermediates of Wild-type and Mutants of Barnase. I. Use of -value Analysis and m-values to Probe the Co-operative Nature of the Folding Pre-equilibrium P. A. Dalby, M. Oliveberg and A. R. Fersht J. Mol. Biol. 276, 625-646 (1998).
313. Folding Intermediates of Wild-type and Mutants of Barnase. II. Correlation of Changes in Equilibrium Amide Exchange Kinetics, with the Population of the Folding Intermediate P. A. Dalby, J. Clarke, C. M. Johnson and A. R. Fersht J. Mol. Biol. 276, 647-656 (1998).
314. Real-Time NMR Studies on Folding of Mutants of Barnase and Chymotrypsin Inhibitor 2 T. R. Killick, S. M. V. Freund and A. R. Fersht FEBS Letters 423, 110-112 (1998).
315. Movement of the Intermediate and Rate Determining Transition State of Barnase on the Energy Landscape with Changing Temperature P. A. Dalby, M. Oliveberg and A. R. Fersht Biochemistry 37, 4674-4679 (1998).
316. A Search for Single Substitutions That Eliminate Enzymatic Function in a Bacterial Ribonuclease D. D. Axe, N. W. Foster and A. R. Fersht Biochemistry 37, 7157-7166 (1998).
317. Sieves in Sequence A. R. Fersht, Science 280, 541 (1998).
318. Folding of Circular and Permuted Chymotrypsin Inhibitor 2: Retention of the Folding Nucleus D. E. Otzen and A. R. Fersht Biochemistry 37, 8139-8146 (1998).
319. Nine Hydrophobic Side-Chains are Key Determinants of the Thermodynamic Stability and Oligomerization Status of Tumour Suppressor p53 Tetramerization Domain M. G. Mateu and A. R. Fersht EMBO Journal 17, 2748-2758 (1998).
320. Synergy Between Simulation and Experiment in Describing the Energy Landscape of Protein Folding A. G. Ladurner, L. S. Itzhaki, V. Daggett and A. R. Fersht Proc. Natl. Acad. Sci. USA 95, 8473-8478 (1998).
321. In vivo activities of GroEL minichaperones J. Chatellier, F. Hill, P. A. Lund, and A. R. Fersht Proc. Natl. Acad. Sci. USA 95, 9861-9866 (1998).
322. Electrostatic Enhancement of Diffusion-Controlled Protein-Protein Association: Comparison of Theory and Experiment on Barnase and Barstar M. Vijayakumar, K.-Y. Wong, G. Schreiber, A. R. Fersht, A. Szabo and H.-X. Zhou J. Mol. Biol. 278, 1015-1024 (1998).
323. Semirational Design of Active Tumor Suppressor p53 DNA Binding Domain with Enhanced Stability P. V. Nikolova, J. Henckel, D. P. Lane and A. R. Fersht Proc. Natl. Acad. Sci. USA 95, 14675-14680 (1998).
324. Minimal and Optimal Mechanisms for GroE-Mediated Protein Folding A. P. Ben-Zvi, J. Chatellier, A. R. Fersht and P. Goloubinoff Proc. Natl. Acad. Sci. USA 95, 15275-15280 (1998).
325. A Combined Molecular Dynamics and -Value Analysis of Structure-Reactivity Relationships in the Transition State and Unfolding Pathway of Barnase: The Structural Basis of Hammond and Anti-Hammond Effects V. Daggett, A. Li and A. R. Fersht J. Amer. Chem. Soc. 120, 12740-12754 (1998).
326. The Changing Nature of the Protein Folding Transition State: Implications for the Shape of the Free-Energy Profile for Folding M. Oliveberg, J.-Y. Tan, M. Silow and A. R. Fersht J. Mol. Biol. 277, 933-943 (1998). 327. Exploring the Folding Funnel of a Polypeptide Chain by Biophysical Studies on Protein Fragments J. L. Neira and A. R. Fersht J. Mol. Biol. 285, 1309-1333 (1999).
328. Stability and Folding of the Tumour Suppressor Protein p16 K. S. Tang, , B. J. Guralnick, W. K. Wang, A. R. Fersht, and L. S. Itzhaki J. Mol. Biol. 285, 1869-1886 (1999).
329. An Irregular -Bulge Common to a Group of Bacterial RNases is an Important Determinant of Stability and Function in Barnase D. D. Axe, N. W. Foster and A. R. Fersht J. Mol. Biol. 286, 1471-1485 (1999).
330. Structural Response to Mutation at a Protein-Protein Interface C. Vaughan, A. M. Buckle and A. R. Fersht J. Mol. Biol. 286, 1487-1506 (1999).
331. Upper Limit of the Time Scale for Diffusion and Chain Collapse in Chymotrypsin Inhibitor 2 A. G. Ladurner and A. R. Fersht Nature Structural Biology 6, 28-31 (1999).
332. Mutually Compensatory Mutations During Evolution of the Tetramerization Domain of Tumor Suppressor p53 Lead to Impaired Hetero-Oligomerization M. G. Mateu and A. R. Fersht Proc. Natl. Acad. Sci. 96, 3595-3599 (1999).
333. Acquisition of Native-Like Interactions in C-Terminal Fragments of Barnase J.-L. Neira and A. R. Fersht J. Mol. Biol. 287, 421-432 (1999).
334. Mechanism of Folding and Assembly of a Small Tetrameric Protein Domain from Tumour Suppressor p53 M. G. Mateu, M. M. Sánchez del Pino and A. R. Fersht Nature Structural Biology 6, 191-198 (1999).
335. Analysis of Protein-Protein Interactions by Mutagenesis: Direct Versus Indirect Effects D. E. Otzen and A. R. Fersht Protein Engineering 12, 41-45 (1999).
336. Oxidative Refolding Chromatography: Folding of the Scorpion Toxin Cn5 M. M. Altamirano, C. García, L. D. Possani and A. R. Fersht Nature Biotechnology 17, 187-191 (1999).
337. Equilibrium Folding Properties of the Yeast Prion Protein Determinant Ure2 S. Perrett, S. J. Freeman, P. J. G. Butler and A. R. Fersht J.. Mol. Biol. 290, 331-345 (1999).
338. The Solution Structure of Oxidized Escherichia coli Cytochrome b562 F. Arnesano, L. Banci, I. Bertini, J. Faraone-Mennella, A. Rosato, P. D. Barker and A. R. Fersht Biochemistry 38, 8657-8670 (1999).
339. Hot-Spot Mutants of p53 Core Domain Reveal Characteristic Local Structural Changes K.-B. Wong, B. S. DeDecker, S. M. V. Freund, M. R. Proctor, M. Bycroft and A. R. Fersht Proc. Natl. Acad. Sci. USA 96, 8438-8442 (1999).
340. Folding of barstar C40A/C82A/P27A and Catalysis of the Peptidyl-Prolyl cis/trans Isomerization by Human Cytosolic Cyclophilin (Cyp18) R. Golbik, G. Fischer and A. R. Fersht Protein Science 8, 1505-1514 (1999).
341. GroEL Recognises Sequential and Non-Sequential Linear Structural Motifs Compatible with Extended ß-Strands and -Helices J. Chatellier, A. M. Buckle and A. R. Fersht J. Mol. Biol.. 292, 163-172 (1999).
342. Identification of Substrate Binding Site of GroEL Minichaperone in Solution Naoki Tanaka and Alan R. Fersht J. Mol. Biol. 292, 173-180 (1999).
343. NMR Analysis of the Binding of a Rhodanese Peptide to a Minichaperone in Solution N. Kobayashi, S. M. V. Freund, J. Chatellier, R. Zahn and A. R. Fersht J. Mol. Biol.292, 181-190 (1999).
344. Equilibria and Kinetics of Folding of Gelsolin Domain 2 and Mutants Involved in Familial Amyloidosis - Finnish Type R. L. Isaacson, A. G. Weeds and A. R. Fersht Proc. Natl. Acad. Sci. USA 96, 11247-11252 (1999).
345. The FHA Domain is a Modular Phosphopeptide Recognition Motif D. Durocher, J. Henckel, A. R. Fersht and S. P. Jackson Molecular Cell 4, 387-394 (1999). 346. Design of Highly Stable Functional GroEL Minichaperones Q. Wang, A. M. Buckle, N. W. Foster, C. M. Johnson and A. R. Fersht Protein Science 8, 2186-2193 (1999).
347. Real-Time NMR Studies on a Transient Folding Intermediate of Barstar T. R. Killick, S. M. V. Freund and A. R. Fersht Protein Science 8, 1286-1291 (1999).
348. Interdomain Interactions Within the Gene 3 Protein of Filamentous Phage J. Chatellier, O. Hartley, A. D. Griffiths, A. R. Fersht, G. Winter and L. Riechmann FEBS Letters 463 371-374 (1999).
349. Formation of Short-Lived Protein Aggregates Directly from the Coil in Two-State Folding M. Silow, Y.-J. Tan, A. R. Fersht and M. Oliveberg Biochemistry, 38, 13006-13012 (1999). 350. Directed evolution of new catalytic activity using the /-barrel scaffold Myriam M. Altamirano, Jonathan M. Blackburn, Cristina Aguayo and Alan R. Fersht Nature 403, 617-622 (2000). 351. Quantitative Analysis of Residual Folding and DNA Binding in Mutant p53 Core Domain: Definition of Mutant States for Rescue in Cancer Therapy A. N. Bullock, J. Henckel and A. R. Fersht Oncogene 19, 1245-1256 (2000). 352. Towards a Complete Description of the Structural and Dynamic Properties of the Denatured State of Barnase and Their Role in Folding K.-B. Wong, J. Clarke, C. J. Bond, J.-L. Neira, S. M. V. Freund, A. R. Fersht and V. Daggett J. Mol. Biol. 296, 1257-1282 (2000).
353. Mechanism of Rescue of Common p53 Cancer Mutations by Second-Site Suppressor Mutations P. V. Nikolova, K.-B. Wong, J. Henckel and A. R. Fersht EMBO Journal 19, 370-378 (2000). 354. Transition State Structure as a Unifying Basis in Protein Folding Mechanisms: Contact Order, Chain Topology, Stability and the Extended Nucleus Mechanism A. R. Fersht Proc. Natl. Acad. Sci. USA 97, 1525-1529, (2000). 355. Stabilization of GroEL Minichaperones by Core and Surface Mutations Q. Wang, A. M. Buckle and A. R. Fersht J. Mol. Biol. 298, 917-926 (2000). 356. Stability and Folding of the Protein Complexes of Barnase J. L. Neira, E. Vázquez and A. R. Fersht Eur. J. Biochem. 267, 2859-2870 (2000). 357. Protein folding transition states: Elicitation of Hammond effects by 2,2,2- trifluoroethanol C-P Benny Yiu, Mauricio G. Mateu and A. R. Fersht ChemBioChem. 1, 49-55 (2000). 358. Bacterial and Yeast Chaperones Reduce Both Aggregate Formation and Cell Death in Mammalian Models of Huntington’s Disease J. Carmichael, J. Chatellier, A. Woolfson, C. Milstein, A. R Fersht and D. C Rubinsztein Proc. Natl.Acad.Sci.USA 97, 9701-9705 (2000). 359. Biophysical Characterization of Elongin C from Saccharomyces cerevisiae A. Buchberger, M. J. Howard, S. M. V. Freund, M. Proctor, P. J. G. Butler, A. R. Fersht and M. Bycroft Biochemistry 39, 11137-11146 (2000). 360. Conversion of Two-State to Multi-State Folding Kinetics on Fusion of Two Protein Foldons K. Inaba, N. Kobayashi and A. R. Fersht J. Mol. Biol. 302, 219-233 (2000). 361. Elucidating the Mechanism of Familial Amyloidosis-Finnish Type (FAF): NMR Studies of Human Gelsolin Domain 2 S. L. Kazmirski, M. J. Howard, R. L. Isaacson and A. R. Fersht Proc.Natl.Acad.Sci. USA. 97, 10706-10711 (2000). 362. Protein Folding and Unfolding in Microseconds to Nanoseconds by Experiment and Simulation U. Mayor, C. M. Johnson, V. Daggett and A. R. Fersht Proc. Natl. Acad. Sci. USA 97, 13518-13522 (2000). 363. From Minichaperone to GroEL 1: Information on GroEL-Polypeptide Interactions From Crystal Packing of Minichaperones Q. Wang, A. M. Buckle and A. R. Fersht J.Mol.Biol. 304, 873-881 (2000). 364. From Minichaperone to GroEL 2: Importance of Avidity of the Multisite Ring Structure J. Chatellier, F. Hill and A. R. Fersht J.Mol.Biol. 304, 883-896 (2000). 365. From Minichaperone to GroEL 3: Properties of an Active Single-Ring Mutant of GroEL J. Chatellier, F. Hill, N. W. Foster, P. Goloubinoff and A. R. Fersht J.Mol.Biol. 304, 897-910 (2000).
366. A Kinetically Significant Intermediate in the Folding of Barnase A. R. Fersht Proc. Natl. Acad. Sci. USA 97, 14121-14126 (2000)
367. The Effects of Disulfide Bonds on the Denatured State of Barnase J. Clarke, A. M. Hounslow, C. J. Bond, A. R. Fersht and V. Daggett Protein Science 9, 2394-2404 (2000).
368. Ligand-Independent Assembly of Synthetic Human CD1 Using Oxidative Refolding Chromatography M. M. Altamirano, W. Woolfson, A. Donda, A. Shamshiev, L. Briseño-Roa, N. W. Foster, D. B. Veprintsev, G. de Libero, A. R. Fersht, C. Milstein Proc. Natl. Acad. Sci. USA 98, 3288-3293 (2001).
369. Human CD1d/Glycolipid Tetramers Generated by In Vivo Oxidative Refolding Chromatography A. Karadimitris, S. Gadola, M. M. Altamirano, D. Brown, A. Woolfson, P. Klenerman, J.-L. Chen, Y. Koezuka, I. A. G. Roberts, D. A. Price, G. Dusheiko, C. Milstein, A. R. Fersht, L. Luzzatto, and V. Cerundolo Proc. Natl. Acad. Sci. USA 98, 3294-3298 (2001).
370. Protein Folding From a Highly Disordered Denatured State: The Folding Pathway of Chymotrypsin Inhibitor 2 at Atomic Resolution S. L. Kazmirski, K.-B. Wong, S. M. V. Freund, Y.-J. Tan, A. R. Fersht and V. Daggett Proc. Natl. Acad. Sci. USA 98, 4349-4354 (2001).
371. Structure of the C-Terminal Sterile-Motif (SAM) Domain of Human p73 W. K. Wang, M. Bycroft, N. W. Foster, A. M. Buckle, A. R. Fersht and Y. W. Chen Acta Cryst. D57, 545-551 (2001).
372. The Binding of Bis-ANS to the Isolated GroEL Apical Domain Fragment Induces the Formation of a Folding Intermediate With Increased Hydrophobic Surface Not Observed in Tetradecameric GroEL. A. L. Smoot, M. Panda, B. T. Brazil, A. M. Buckle, A. R. Fersht and P. M. Horowitz Biochemistry 40, 4484-4492 (2001).
373. Experimental Assignment of the Structure of the Transition State for the Association of Barnase and Barstar C. Frisch, A. R. Fersht and G. Schreiber J.Mol.Biol.308, 69-77 (2001)
374. Rescuing the Function of Mutant p53 A. N. Bullock and A. R. Fersht Nature Reviews Cancer 1, 68-76 (2001).
375. Ultrafast Folding of WW Domains Without Structured Aromatic Clusters in the Denatured State N. Ferguson, C. M. Johnson, M. Macias, H. Oschkinat and A. Fersht, Proc. Natl. Acad. Sci. USA 98, 13002-1307 (2001).
376. Using Flexible Loop Mimetics to Extend -Value Analysis to Secondary Structure Interactions N. Ferguson, J. R. Pires, F. Toepert, C. M. Johnson, Y. P. Pan, R. Volkmer-Engert, J. Schneider-Mergener, V. Daggett, H. Oschkinat and A. Fersht Proc. Natl. Acad. Sci. USA 98, 13008-13013 (2001).
377. Loss of a Metal-Binding Site in Gelsolin Leads to Familial Amyloidosis-Finnish Type S. L. Kazmirski, R. L. Isaacson, C. An, A. Buckle, C. M. Johnson, V. Daggett and A. R. Fersht Nature Structural Biology 9, 112-116 (2002).
378. Folding of the Yeast Prion Protein Ure2: Kinetic Evidence for Folding and Unfolding Intermediates D. Galani, A. R. Fersht and S. Perrett J. Mol. Biol. 315, 213-227 (2002).
379. A Peptide that Binds and Stabilises p53 Core Domain: Chaperone Strategy for Rescue of Oncogenic Mutants A. Friedler, L. O. Hansson, D. B. Veptrintsev, S. M. V. Freund, T. M. Rippin, P. V. Nikolova, M. R. Proctor, S. Rüdiger and A. R. Fersht Proc. Natl.Acad. Sci. USA 99, 937-942 (2002).
380. Protein folding and unfolding at atomic resolution. A. R. Fersht and V. Daggett, Cell 108, 573-582 (2002). 381. Characterization of the p53 Rescue Drug CP-31398 in vitro and in Living Cells T. M. Rippin, V. J. N. Bykov, S. M. V. Freund, G. Selivanova, K. G. Wiman and A. R. Fersht Oncogene 21 2119-2129 (2002).
382. A Structural Double Mutant Cycle: Estimating the Strength of a Buried Salt-Bridge in Barnase C. K. Vaughan, P. Harryson, A. M. Buckle, M. Oliveberg and A. R. Fersht Acta. Cryst. D.58, 591-600 (2002).
383 Recognition of DNA by p53 Core Domain and Location of Intermolecular Contacts of Cooperative Binding. T. M. Rippin, S. M. V. Freund, D. B. Veprintsev and A. R. Fersht J. Mol. Biol 319, 351-358 (2002).
384. Two Sequence Motifs from HIF-1 Bind to the DNA Binding Site of p53 L. O. Hansson, A. Friedler, S. Freund, S. Rüdiger and A. R. Fersht Proc. Natl. Acad. Sci. USA 99, 10305-10309 (2002).
385. "CRINEPT-TROSY NMR Reveals p53 Core Domain Bound in an Unfolded Form to the Chaperone HSP90" S. Rüdiger, S. M. V. Freund, D. B. Veprintsev, and A. R. Fersht Proc. Natl. Acad. Sci. USA 99, 11085-11090 (2002).
386. Molecular Mechanism of the Interaction between MDM2 and p53. O. Schon, A. Friedler, M. Bycroft, S.M.V. Freund and A.R. Fersht J. Mol. Biol 319, 491-501 (2002).
387. On the Simulation of Protein Folding by Short time Scale Molecular Dynamics and Distributed Computing A. R. Fersht Proc. Natl. Acad. Sci. USA 99, 14122-14125 (2002).
388. Is There a Unifying Mechanism for Protein Folding? V. Daggett and A. R. Fersht Trends in Biochem. Sciences 28, 19-26 (2003).
389. Sequential Unfolding of Ankyrin Repeats in Tumour Suppressor p16 K. S. Tang, A. R. Fersht and L. S. Itzhaki Structure 11, 67-73 (2003).
390. Early Events in Protein Folding N. Ferguson and A.R. Fersht Current Opinion in Structural Biology, 13, 75-81 (2003).
391. The Complete Folding Pathway of a Protein from Nanoseconds to Microseconds U. Mayor, N. R. Guydosh, C. M. Johnson, S. Sato, G. S. Jas, S. M. V. Freund, J. G. Grossmann: D. O.V. Alonso, V. Daggett and A. R. Fersht Nature 421, 863-867 (2003).
392. The Present View of the Mechanism of Protein Folding V. Daggett and A. R. Fersht Nature Reviews Molecular Cell Biology 4, 497-502 (2003).
393. Mimicking Natural Evolution in vitro: an N-Acetylneuraminate Lyase Mutant with an Increased Dihydrodipicolinate Synthase Activity A. C. Joerger, S. Mayer and A. R. Fersht Proc. Natl. Acad. Sci. USA. 100, 5694-5699 (2003).
394. Kinetic Instability of p53 Core Domain Mutants: Implications for Rescue by Small Molecules. A. Friedler, D. B. Veprintsev, L. O. Hansson and A. R. Fersht J. Biol. Chem. 278, 24108-24112 (2003).
395. Rapid Amyloid Fiber Formation from the Fast Folding WW Domain FBP28 N. Ferguson, J. Berriman, M. Petrovich, T. D. Sharpe, J.T. Finch and A. R. Fersht, Proc. Natl. Acad. Sci. USA. 100, 9814-9819 (2003).
396. The Kinetic Pathway of Folding of Barnase F. Khan, J. I. Chuang, S. Gianni and A. R. Fersht J. Mol. Biol 333, 169-186 (2003).
397. Structural Insights in the Folding of Small Single-Domain Proteins S. Gianni, U. Mayor and A. R. Fersht Italian Journal of Biochemistry 52, 72-79 (2003).
398. Rescue of Mutants of the Tumour Suppressor p53 in Cancer Cells by a Designed Peptide N. Issaeva, A. Friedler, P. Bozko, K. G. Wiman, A. R. Fersht and G. Selivanova Proc.Natl.Acad.Sci. USA) 100, 13303-13307 (2003).
399. The Denatured State of Engrailed Homeodomain Under Denaturing and Native Conditions U. Mayor, J. G. Grossmann, N. W. Foster, S. M. V. Freund and A. R. Fersht J.Mol.Biol. 333, 977-991 (2003).
400. Crystal Structures of Engrailed Homeodomain Mutants: Implications for Stability and Dynamics E. J. Stollar, U. Mayor, S. Lovell, L. Federici, S. Freund, A. R. Fersht and B. F. Luisi J. Biol. Chem. 278, 43699-43708 (2003).
401. Unifying Features in Protein Folding Mechanisms. S. Gianni, N. R. Guydosh, F. Khan, T. D. Caldas, U. Mayor, G. W.N. White, M. L. DeMarco, V. Daggett, and A. R. Fersht Proc. Natl. Acad. Sci. USA. 100, 13286-13291 (2003),
402. Crystal Structure of a Superstable Mutant of Human p53 Core Domain: Insights into the Mechanism of Rescuing Oncogenic Mutations. A. C. Joerger, M. Allen and A. R. Fersht J. Biol. Chem. 279, 1291-1296 (2004).
403. Structural distortion of p53 by the mutation R249S and its rescue by a designed peptide: implications for "mutant conformation" A. Friedler, B. S. DeDecker, S. M.V. Freund, C. Blair, S. Rüdiger and A. R. Fersht J. Mol. Biol. 336, 187-196 (2004).
404. Binding of p53-derived ligands to MDM2 induces a variety of long range conformational changes Oliver Schon, Assaf Friedler, Stefan Freund and Alan R. Fersht. J.Mol.Biol. 336, 197-202 (2004).
405. The Crystal Structure of Human CD1b with a Bound Bacterial Glycolipid T. Batuwangala, D. Shepherd, S. D. Gadola, K. J.C. Gibson, N. R. Zaccai, A. R. Fersht, G. S. Besra, V. Cerundolo and E. Y. Jones J. Immunol. 172, 2382-2388 (2004).
406. The Development of a CDK2-Docking Site Peptide That Inhibits p53 and Sensitizes Cells to Death. M. Ferguson, M. G. Luciani, L. Finlan, E.M. Rankin, S. Ibbotson, A. Fersht, and T.R. Hupp Cell Cycle 3, 80-89 (2004).
407. Demonstration of a low-energy on-pathway intermediate in a fast-folding protein by kinetics, protein engineering, and simulation. P. Jemth, S. Gianni, R. Day, B. Li, C.M. Johnson, V. Daggett, and A.R. Fersht Proc. Natl. Acad. Sci. USA. 101 6450-6455 (2004).
408. Testing protein-folding simulations by experiment: B domain of protein A. S. Sato, T.L. Religa, V. Daggett, and A.R. Fersht Proc. Natl. Acad. Sci. USA. 101, 6952-6956 (2004).
409 -Value analysis and the nature of protein-folding transition states. A.R. Fersht and S. Sato Proc. Natl. Acad. Sci. USA. 101, 7976-7981 (2004).
410. Designing a metal-binding site in the scaffold of E. coli KDO8PS. Z. Oliynyk, L. Briseno-Roa, T. Janowitz, P. Sondergeld, and A.R. Fersht Protein Eng Des Sel. 17, 383-390 (2004).
411. Cooperative Binding of Tetrameric p53 to DNA R. L. Weinberg, D. B. Veprintsev, and A. R. Fersht J. Mol. Biol. 341, 1145-1159 (2004).
412. Regulation of DNA binding of p53 by its C-terminal domain R. L. Weinberg, S. M.V. Freund, D. B. Veprintsev, M. Bycroft, and A. R. Fersht J. Mol. Biol. 342, 801-811 (2004).
413. One-step downhill versus conventional protein folding N. Ferguson, P J. Schartau, T. D. Sharpe, S. Sato & A. R. Fersht J. Mol. Biol. 344, 295-301 (2004).
414. Relationship of Leffler (Brønsted) -values and protein folding -values to position of transition state structures on reaction co-ordinates A. R. Fersht Proc. Natl. Acad. Sci. USA 101, 14338-14342 (2004).
415. -value versus -analysis A. R. Fersht Proc. Natl. Acad. Sci. USA 101, 17327-17328 (2004).
416, Effects of heme on the structure of the denatured state and folding kinetics of cytochromes P. Garcia, M. Bruix, M. Rico, S. Ciofi-Baffoni, L. Banci, M. C. Ramachandra Shastry, H. Roder, T. de Lumley Woodyear, C. M. Johnson, A. R. Fersht and Paul. D. Barker J. Mol. Biol. 346, 331-344 (2004).
417. Binding of natively unfolded HIF-1 ODD domain to p53 N. Sánchez-Puig, D. B. Veprintsev and A. R. Fersht Molecular Cell 17, 11-21 (2005).
418. Modulation of binding of DNA to the C-terminal domain of p53 by acetylation A. Friedler, D. B. Veprintsev, S. M.V. Freund, K. I. von Glos and A. R. Fersht Structure 13, 629-636 (2005).
419. Binding of Rad51 and other peptide sequences to a promiscuous, highly electrostatic, binding site in p53 A. Friedler, D. B. Veprintsev, T. Rutherford, K. I. von Glos and A. R. Fersht J. Biol. Chem. 280, 8051-8059 (2005).
420. Simulation and experiment at similar temperatures: Ultrafast folding of a thermophilic protein by nucleation-condensation N. Ferguson, R. Day, C. M. Johnson, M. D. Allen, V. Daggett and A. R. Fersht J. Mol. Biol. 347, 855-870 (2005).
421. Comparative Binding of p53 to its Promoter and DNA Recognition Elements R. L. Weinberg, D. B. Veprintsev, M. Bycroft, and A. R. Fersht J. Mol. Biol. 348, 589-596 (2005).
422. The Structure of the Major Transition State for Folding of an FF Domain from Experiment and Simulation P. Jemth, R. Day, S. Gianni, F. Khan, M. Allen, V. Daggett and A. R. Fersht J. Mol. Biol. 350, 363-378 (2005).
423. Simulation and Experiment Conspire to reveal Cryptic Intermediates and the Slide from the Nucleation-Condensation to Framework Mechanism of Folding G. W. N. White, S. Gianni, J. G. Grossman, P. Jemth, V. Daggett and A. R. Fersht, J. Mol. Biol. 350, 757-775 (2005).
424. Determination of the transition states for folding of barnase using molecular dynamics simulations restrained by -values and validated by IJ-values from double mutant cycles X. Salvatella, C. M. Dobson, A. R. Fersht and M. Vendruscolo Proc Natl. Acad. Sci. USA. 102, 12389-12394 (2005).
425. Human full-length Securin is a natively unfolded protein N. Sánchez-Puig, D. B. Veprintsev and A. R. Fersht Protein Science, 14, 1410-1418 (2005).
426. Proteins of the S100 family regulate the oligomerization of p53 tumour suppressor M. R. Fernandez-Fernandez, D. B. Veprintsev, and A. R. Fersht Proc Natl. Acad Sci. USA. 102, 4735-4740 (2005).
427. Structures of p53 Cancer Mutants and Mechanism of Rescue by Second-Site Suppressor Mutations A. C. Joerger H-C Ang, D. B. Veprintsev, C. M. Blair, and Alan R. Fersht J. Biol. Chem. 280, 8051-8059 (2005).
428. PFD: a database for the investigation of protein folding kinetics and stability K.F. Fulton, G.L. Devlin, R. A. Jodun, L Silvestri, S. P. Bottomley, A. R. Fersht, and A. M. Buckle Nucleic Acids Res. 33 Database Issue:D279-83 (2005).
429. The crystal structure of human CD1d with and without alpha-galactosylceramide. M. Koch, V. S. Stronge, D. Shepherd, S. D. Gadola, B. Mathew, G. Ritter, A. R Fersht, G. S Besra, R. R Schmidt, E. Y. Jones and V. Cerundolo Nature Immunology 6, 819-826 (2005).
430. Solution structure of a protein denatured state/folding intermediate T. L. Religa, J. S. Markson, U. Mayor, S. M. V. Freund and A.R. Fersht Nature 437, 1053-1056 (2005).
431. Ultra-fast barrier-limited folding in the peripheral subunit-binding domain family N. Ferguson, T. D. Sharpe, P. J. Schartau, S. Sato, M. D. Allen, C. M. Johnson, T. J. Rutherford and A. R. Fersht J. Mol. Biol. 353, 427-446 (2005).
432. The transition state for folding of a peripheral subunit-binding domain contains robust and ionic-strength Dependent characteristics N. Ferguson, T. D. Sharpe, C. M. Johnson & A. R. Fersht J. Mol. Biol. 356, 1237-1245 (2006).
433. Solution structure of the C4 zinc finger domain of HDM2 G.W. Yu, M. Allen, A. Andreeva, A. R. Fersht and Mark Bycroft Protein Science 15, 384-389 (2006)
434. The central region of HDM2 provides a second binding site for p53 G.W. Yu, S. Rudiger, D. Veprintsev, S. Freund, M. R. Fernandez-Fernandez and A. R. Fersht Proc. Natl. Acad. Sci. USA. 102, 1227-1232 (2006).
435. The solution structure of p53 core domain: structural basis for its instability J. M. P. Cañadillas, H. Tidow, S. M. V. Freund, T. J. Rutherford, H. C. Ang and A. R. Fersht Proc. Natl. Acad. Sci. USA. 102, 2115-2119 (2006).
436. Core domain interactions in full length p53 in solution D. B. Veprintsev, S. M.V. Freund, A. Andreeva, S. E. Rutledge, H. Tidow, J. M. P. Cañadillas, C. M. Blair, and A. R. Fersht Proc. Natl. Acad. Sci. USA. 102, 2109-2114 (2006).
437. Analogues with Fluorescent Leaving Groups for Screening and Selection of Enzymes That Efficiently Hydrolyze Organophosphorus Nerve Agent L. Briseno-Roa, J. Hill, S Notman, D. Sellers, A. P. Smith, C. M. Timperley, J. Wetherell, N. H. Williams, G. R. Williams, A. R. Fersht, A. D. Griffiths J. Med. Chem. 49, 246-255 (2006).
438. -analysis of the folding of the B domain of Protein A using multiple optical probes S. Sato, T. L. Religa, and A. R. Fersht J. Mol. Biol. 360, 850-864 (2006).
439. -analysis at the experimental limits: Mechanism of -hairpin Formation M. Petrovich, A. L. Jonsson N. Ferguson, V. Daggett and A. R. Fersht J. Mol. Biol. 360, 865-881 (2006).
440. Characterisation of the native and fibrillar conformation of the human N-acetyltransferase ARD1 N. Sánchez-Puig and A. R. Fersht Protein Science 15, 1968-76 (2006).
441. Effects of common cancer mutations on stability and DNA binding of full-length p53 compared with isolated core domains H. C. Ang, A.C.,Joerger, S. Mayer and A. R. Fersht J. Biol. Chem. 281, 21934-41 (2006).
442. Effects of oncogenic mutations and DNA response elements on the binding of p53 to p53 binding protein 2 (53BP2) H. Tidow, D. B. Veprintsev, S. M. V. Freund, and A. R. Fersht J. Biol. Chem. 281, 21934-41 (2006).
443. Structural basis for understanding oncogenic p53 mutations and designing rescue drugs A.C. Joerger, H. C. Ang & A. R. Fersht Proc Natl. Acad Sci. USA. 103, 32526-33 (2006).
444. General structural motifs of amyloid protofilaments N. Ferguson, J. Becker, H. Tidow, S. Tremmel, T. D. Sharpe, G. Krause, J. Flinders, M. Petrovich, J. Berriman, H. Oschkinat and A. R. Fersht Proc Natl. Acad Sci. USA. 103, 16248-53 (2006).
445. Structural biology: analysis of ‘downhill’ protein folding. N. Ferguson, T. D. Sharpe, C.M. Johnson, P. J. Schartau and A. R. Fersht Nature 445:E14-5; discussion E17-8 (2007).
446. Distinguishing between co-operative and unimodal downhill protein folding F. Huang, S. Sato, T.D. Sharpe, L. Ying and A. R. Fersht Proc Natl. Acad Sci. USA. 104, 123-127 (2007).
447. Energy dependent nucleolar localization of p53 in vitro requires two discrete regions within the p53 carboxyl terminus. O. Karni-Schmidt, A. Friedler, A. Zupnick, K. McKinney, M. Mattia, R. Beckerman 1, P. Bouvet, M. Sheetz, A. R. Fersht, and C. Prives Oncogene 26, 3878-3791 (2007).
448. Conformational entropy of alanine versus glycine in protein denatured states. K. A. Scott, D. O. Alonso, S. Sato, A. R. Fersht, and V. Daggett Proc Natl. Acad Sci. USA. .104, 2661-2666 (2007).
449. Four domains of p300 each bind tightly to a sequence spanning both transactivation sub-domains of p53 D. P. Teufel, S. M. V. Freund, M. Bycroft, and A. R. Fersht Proc Natl. Acad Sci. USA. .104, 7009-7014 (2007).
450. Structure-function-rescue: the diverse nature of common p53 cancer mutants. A. C. Joerger and A. R. Fersht Oncogene 26, 2226-2242 (2007).
451 Solution structure of ASPP2 N-terminal domain (N-ASPP2) reveals an ubiquitin-like fold H. Tidow, A. Andreeva, T. J. Rutherford and A R. Fersht J. Mol. Biol 341, 948-958 (2007).
452. Correlation of levels of folded recombinant p53 in Escherichia coli with thermodynamic stability in vitro S. Mayer, S. Rüdiger, H. C. Ang, A. C. Joerger and A. R. Fersht J. Mol. Biol. 372, 268-276 (2007).
453. The helix-turn-helix motif as an ultra-fast independently folding domain: The pathway of folding of Engrailed Homeodomain T. L. Religa, C. M. Johnson, D. M. Vu, S. H. Brewer, R. B. Dyer and A. R. Fersht Proc Natl. Acad Sci. USA. 104, 9272-9277 (2007).
454. Searching for multiple folding pathways of a nearly symmetrical protein: Temperature dependent -value analysis of the B domain of Protein A S. Sato and A. R. Fersht J. Mol. Biol. 372, 254-267 (2007).
455. Quaternary structures of tumour suppressor p53 and a specific p53- DNA complex H. Tidow, R. Melero, E. Mylonas, S. M.V. Freund, J. G. Grossmann, J. M. Carazo, D. I. Svergun, M. Valle, and A. R. Fersht Proc Natl. Acad Sci. USA, 104, 12324-12329 (2007).
456. The Folding Pathway of an FF Domain: Characterization of an on-pathway intermediate state under folding conditions by 15N, 13C and 13C-Methyl Relaxation Dispersion and 1H/2H-exchange NMR Spectroscopy D. M. Korzhnev, T. L. Religa, P. Lundström, A. R. Fersht and L. E. Kay J. Mol. Biol. 372, 497-512 (2007).
457. Comparative biophysical characterization of p53 with the pro-apoptotic Bak and the anti-apoptotic Bcl-xl. B. Sot, S. M.V. Freund and A R. Fersht, J. Biol. Chem, 282, 29193-29200 (2007)
458. The role of the turn in -hairpin formation during WW domain folding T. Sharpe, A. L. Jonsson, T. J. Rutherford, V. Daggett, and A. R. Fersht Protein Science, 16, 2233-2239 (2007)
459. Algorithm for prediction of tumour suppressor p53 affinity for binding sites in DNA D. B. Veprintsev and A. R. Fersht, Nucl. Acids Res. 36, 158-98 (2008).
460. Fluorescence resonance energy transfer analysis of the folding pathway of Engrailed Homeodomain F. Huang, G. Settani and A.R. Fersht, Protein Eng Des Sel. 21, 131-146 (2008).
461. Demonstration by burst phase analysis of a robust folding intermediate in the FF domain. P. Jemth, C. M. Johnson, S, Gianni and A. R. Fersht, Protein Eng Des Sel. 21, 207-214 (2008).
462. Structure of tumour suppressor p53 and its intrinsically disordered N-Terminal transactivation domain. M. Wells, H. Tidow, T. J. Rutherford, P. Markwick, M. Ringkjobing Jensen, E. Mylonas, D.I. Svergun, M. Blackledge and A. R. Fersht Proc Natl. Acad Sci. USA. 105, 5762-7 (2008).
463. A sequential assignment procedure for proteins that have intermediate line widths in MAS NMR spectra: Amyloid fibrils of human CA150.WW2 J. Becker, N. Ferguson, J. Flinders, B.-J. van Rossum, A. R. Fersht, and H. Oschkinat ChemBioChem 11, 1946-1952 (2008)
464. High temperature unfolding simulations of the TRPZ1 peptide G. Settani and A.R. Fersht, Biophys. J. 94, 4444-53 (2008)
465. The tumor suppressor p53 slides along DNA with low friction and high stability A. Tafvizi, F. Huang, J. Leith, A. R. Fersht, L. Mirny, A. M. van Oijen Biophys. J. 95, L01-03 (2008).
466. Conservation of Transition State Structure in Fast Folding Peripheral Subunit Binding Domains T. D. Sharpe, N. Ferguson, C. M. Johnson and A. R. Fersht J. Mol. Biol. 383, 224-237 (2008).
467. Members of the S100 family bind p53 in two distinct ways. M. R. Fernandez-Fernandez, T. J. Rutherford and A. R. Fersht Protein Science 17, 1663-1670 (2008).
468. The novel p53 isoform “delta p53” is a natively unfolded protein and does not bind the p21 promoter site M. M. García-Alai, H.Tidow, E. Natan E, F. M. Townsley, D. B. Veprintsev and A.R Fersht Protein Science 17, 1671-1678 (2008).
469. Targeted rescue of a destabilized mutant of p53 by an in-silico screened drug F. M. Boeckler, A. C. Joerger, G. Jaggi, T. J. Rutherford, D. B. Veprintsev and A. R. Fersht Proc Natl. Acad Sci. USA. 105, 10360-5 (2008).
470. 14-3-3 activation of DNA binding of p53 by enhancing its association into tetramers S. Rajagopalan, A. M. Jaulent, M. Wells, D. B. Veprintsev, and A. R. Fersht Nucleic Acids Research 36, 5983-5981 (2008).
471. Physical and functional interactions between human mitochondrial single-stranded DNA binding protein and tumor suppressor p53 T. S. Wong, S. Rajagopalan, F.M. Townsley, S. M., Freund, M. Petrovich, D. Loakes and A.R. Fersht Nucleic Acids Research 37, 568-581 (2009).
472. H. Tidow, A. Andreeva1, T. J. Rutherford and A. R. Fersht Solution Structure of the U11-48K CHHC Zinc-Finger Domain that Specifically Binds the 5 Splice Site of U12-Type Introns Structure 17, 294-302 (2009)
473. Structure of human MDM4 N-terminal domain bound to a single domain antibody G. W. Yu, M. Vaysburd, M. D. Allen, G. Settanni and A. R. Fersht J. Mol. Biol. 385, 1578-89 (2009).
474. Downhill versus barrier-limited folding 1. Energetic and structural perturbation of the protein BBL on protonation of a histidine of unusually low pKa. E. Arbely, T. J. Rutherford, T. D. Sharpe, N. Ferguson, and A. R. Fersht J. Mol. Biol. 387, 986-992 (2009).
475. Downhill versus barrier-limited folding of BBL 2. Mechanistic insights from kinetics of folding monitored by independent tryptophan probes. H. Neuweiler, T. D. Sharpe, C. M. Johnson, D. P. Teufel, N. Ferguson and Alan R. Fersht J. Mol. Biol. 387, 975-985 (2009).
476. Downhill versus barrier-limited folding of BBL 3. Heterogeneity of the native state of the BBL peripheral subunit binding domain and its implications for folding mechanisms. G. Settanni and A. R. Fersht J. Mol. Biol. 387, 993-1001 (2009).
477. Molecular basis of the interactions between the p73 N terminus and p300: effects on transactivation and modulation by phosphorylation S. Burge, D. P, Teufel, F. M. Townsley, S. M. V. Freund, M. Bycroft and A. R. Fersht Proc Natl. Acad Sci. USA. 106, 3142-7 (2009).
478. Time-resolved FRET study shows a compact denatured state of the B domain of Protein A. F. Huang, E. Lerner, S. Sato, D. Amir, E. Haas and A.R. Fersht Biochemistry 48, 3468-76 (2009).
479. Regulation by phosphorylation of the relative affinities of the N-terminal transactivation domains of p53 for p300 domains and Mdm2 D. P. Teufel, M. Bycroft and A.R. Fersht, Oncogene 28, 2112-18 (2009).
480. Modulation of the oligomerization state of p53 by differential binding of proteins of the S100 family to p53 monomers and tetramers J. van Dieck, M. R. Fernandez-Fernandez, D. B. Veprintsev and A. R. Fersh J. Biol. Chem. 284, 13804-11 (2009).
481. PRIMA-1 Reactivates Mutant p53 by Covalent Binding to the Core Domain J. M.R. Lambert, P. Gorzov, Di. B. Veprintsev, M. Söderqvist, D. Segerbäck, J. Bergman, A. R. Fersht, P. Hainaut, K. G. Wiman, and V. J.N. Bykov Cancer Cell 15, 376-388 (2009).
482. The folding mechanism of BBL: Plasticity of transition state structure observed within an ultrafast folding protein family. H. Neuweiler, T. D. Sharpe, T. J. Rutherford, C. M. Johnson, N. Ferguson, and A. R. Fersht J. Mol. Biol. 390, 1060-1073 (2009).
483. Stabilising the DNA-binding domain of p53 by rational design of its hydrophobic core. K. H. Khoo, A. C. Joerger, S. M.V. Freund; and A. R. Fersht Prot. Eng. Des. and Sel. 22, 421-430 (2009).
484. Interaction between the transactivation domain of p53 and PC4 exemplifies acidic activation domains as ssDNA mimics. S. Rajagopalan, A. Andreeva, D. P. Teufel, S. M. V. Freund and A. R. Fersht J. Biol. Chem. 284, 21728-37 (2009).
485. Ultraslow oligomerization equilibria of p53 and its implications E. Natan, D. Hirschberg, C. V. Robinson and A. R Fersht Proc Natl. Acad Sci. USA 106, 14327-32 (2009).
486. Adaptive Evolution of p53 Thermodynamic Stability K. H. Khoo, A. Andreeva, and A. R. Fersht J. Mol. Biol. 393, 161-179 (2009).
487. Effects of Stability on the Biological Function of p53 Kian Hoe Khoo, Sebastian Mayer and A. R.Fersht J. Biol. Chem. 284, 30974-80 (2009). 488. Direct observation of barrier limited folding of BBL by single-molecule fluorescence resonance energy transfer F. Huang, L, Ying and A. R. Fersht Proc Natl. Acad Sci. USA 106, 16239-44 (2009). 489. Structural evolution of p53, p63, and p73: Implication for heterotetramer formation. A. Joerger, S. Rajagopalan, E. Natan, D. B. Veprintsev, C. V. Robinson, and A. R. Fersht Proc Natl. Acad Sci. USA 106, 17705-10 (2009)
490. Direct observation of ultra-fast folding and denatured state dynamics in single protein molecules H. Neuweiler, C. M. Johnson and A. R. Fersht Proc Natl. Acad Sci. USA 106, 18569-74 (2009).
491. Molecular basis of S100 proteins interacting with the p53-homologs p63 and p73 J. van Dieck, T. Brandt, D. P. Teufel, F. M. Townsley, A. C. Joerger, D. B. Veprintsev and A. R. Fersht Oncogene, in press
492. The accessory subunit of mitochondrial DNA polymerase gamma determines the DNA content of mitochondrial nucleoids in human cultured cells. M. Di Re, H. Sembongi, J. He, A. Reyes, T. Yasukawa, P. Martinsson, L. J. Bailey, S, Goffart, J. D. Boyd-Kirkup, T. S. Wong, A. R. Fersht, J. N. Spelbrink, and I. J. Holt Nucleic Acids Res. 37, 5701-13 (2009)
493. Mechanistic differences in the transcriptional activation of p53 by 14-3-3 isoforms S. Rajagopalan, R. S. Sade, F. M. Townsley and A. R. Fersht* Nucleic Acids Res, in press (2009).
494. Multiple conformations of full-length p53 detected with single-molecule fluorescence resonance energy transfer F. Huang, S. Rajagopalan, G. Settanni, R. J. Marsh, D. A. Armoogum, N. Nicolaou, A. J. Bain, E, Lener, E. Haas L. Ying and A. R. Fersht Proc Natl. Acad Sci. USA 106, 20758-63 (2009).
495. Direct observation versus ambiguous kinetics and thermodynamics F. Huang, L, Ying, H. Neuweiler and A. R. Fersht Proc Natl. Acad Sci. USA 106, 18569-74 (2009).
496. Towards the Rational Design of p53 Stabilizing Drugs: Probing the Surface of the Oncogenic Y220C Mutant N. Basse, J. L. Kaar, G. Settanni, A. C. Joerger, T. J. Rutherford and A. R. Fersht Chemistry and Biology, in press.
BOOK CHAPTERS AND GENERAL REVIEWS 1. Intramolecular Catalysis. A.J. Kirby and A.R. Fersht, Progr. Bioorganic Chemistry 1, 1-82 (1971). 2. The Present Knowledge of Enzyme Catalysis. A.R. Fersht in 'Enzymic and Non-Enzymic Catalysis', ed. P. Dunnill, A. Wiseman and N. Blakeborough, Ellis Horwood, 13-27 (1980). 3. The Charging of tRNA. A.R. Fersht in 'Accuracy in Molecular Biology' Ed. T.B.L. Kirkwood, R.F. Rosenberger and D.J. Galas, Chapman and Hall, 67-82 (1986). 4. The Study and Design of Enzymes by Protein Engineering. R.J. Leatherbarrow, T.N.C. Wells and A.R. Fersht, in "Enzymes as catalysts in organic synthesis" Ed. M.P. Schneider, Reidel Publishing Co., Dordrecht Holland (1986). 5. Use of Protein Engineering to Study Enzyme Mechanisms. R.J. Leatherbarrow and A.R. Fersht, in "Enzyme Mechanisms" Ed. M.I. Page and A. Williams, The Royal Society of Chemistry, 78-96 (1987). 6. Protein Engineering. R.J. Leatherbarrow and A.R. Fersht, Protein Engineering 1, 7-16 (1986). 7. Kinetic Aspects of Purposely Modified Proteins. A.R. Fersht, in "Protein Engineering" Ed. D.L. Oxender and C.F. Fox, Alan R. Liss and Co. 221-224 (1987). 8. Structure and Activity of the Tyrosyl-tRNA Synthetase. A.R. Fersht and R.J. Leatherbarrow in "Protein Engineering" Ed. D.L. Oxender and C.F. Fox, Alan R. Liss and Co. 269-278 (1987). 9. Dissection of the Structure and Activity of An Enzyme. A.R. Fersht, The Robert A. Welch Foundation Conference on on Chemical Research XXXI. Design of Enzymes and Enzyme Models, 159-182 (1988). 10. Altering the Structure of Enzymes by Site-Directed Mutagenesis W.H.J. Ward and A.R. Fersht in "Redesigning the Molecules of Life" ed S. Benner Springer-Verlag, 59-86 (1988). 11. Protein Engineering in Analysis of Protein Folding Pathways and Stability Andreas Matouschek and Alan R. Fersht, Methods in Enzymology 202, 81-112 (1991). 12. Quantitative analysis of the effect of different alpha-helix structural motifs on protein stability and folding. Serrano, L., Sancho, J., Matouschek, A., and Fersht, A. R. Proceedings of the 6th International Symposium on Genetics of Industrial Microorganisms, (1990) Strasbourg 1990, 1, 25-35 (1991) (Ed. H. Heslot, J. Davies, J. Florent, L. Bobichon, G. Durand, and L. Penasse, Société Française de Microbiologie).
13. Protein Engineering A. R. Fersht, 75th National Research Council Scientific Symposium: Ottawa (1991). 14. Pathway and stability of folding of barnase. A. R. Fersht Structure 1, 2 (1993). 15. Pro-sequence assisted protein folding J. Eder and A. R. Fersht Molecular Microbiology 16, 609-614 (1995). 16. Characterizing Transition States in Protein Folding: An Essential Step in the Puzzle A. R. Fersht Current Opinion in Structural Biology, 5, 79-84 (1995). 17. Nucleation Mechanisms in Protein Folding A. R. Fersht Current Opinion in Structural Biology, 7, 3-9 (1997). 18. Protein folding: Think globally, (inter)act locally A. R. Fersht and E. I. Shakhnovich Current Biology 8, R478 - R479 (1998).
19. Barnase: Fluorescence Analysis of A Three Tryptophan Protein Y. Engelborghs and A.. R. Fersht Topics in Fluorescence Spectroscopy, 6 Protein Fluorescence, ed. Joseph R. Lakowicz, Kluwer Academic/Plenum Publishers, New York, 2000.
20. Max Ferdinand Perutz, OM, FRS - Obituary A. R. Fersht Nature Structural Biology 9, 245-246 (2002).
21. A Guide to Measuring and Interpreting -values N. R. Guydosh and A. R. Fersht Protein Folding Handbook Volume 1. Ed J. Buchner and T. Kiefhaber Wiley-VCH, Germany 445-443 (2005)
22. Wild type p53 conformation and structural consequences of p53 mutations A. C. Joerger, A. Friedler and A. R. Fersht 25 Years of p53 Research, Ed P. Hainault and K.G. Wiman, Springer Netherlands, 377-397 (2005). 23 Understanding the effects of cancer-associated mutations in the tumor suppressor protein p53: structural consequences of mutations and possible ways of rescuing oncogenic mutants A. C. Joerger, A. Friedler and A. R. Fersht Protein Misfolding, Aggregation and Conformational Diseases. Ed V. N. Uversky and A. L. Fink, Springer Netherlands, in press
24. Structural Biology of the Tumor Suppressor p53 and Cancer-Associated Mutants A. C. Joerger and A. R. Fersht Adv Cancer Res. 97,1-23 (2007).
25. Structural Biology of the Tumor Suppressor p53 A. C. Joerger and A. R. Fersht Annu Rev Biochem. 77, 557-582 (2008).
26. Combining experiment and simulation in protein folding: closing the gap for small model systems R. D. Schaeffer, A. Fersht A and V. Daggett, Curr Opin Struct Biol. 18, 4-9 (2008).
27. From the first protein structures to our current knowledge of protein folding: delights and scepticisms A. R. Fersht Nature Reviews Molecular and Cellular Biology 9, 665-654 (2008).
28. The most influential journals: Impact Factor and Eigenfactor. A. Fersht. Proc Natl Acad Sci U S A. 106, 6883-4 (2009).
BOOKS Enzyme Structure and Mechanism (W.H. Freeman & Co., 1977). Enzyme Structure and Mechanism 2nd Edn. (W.H. Freeman & Co., 1985). Structure and Mechanism in Protein Science: A Guide to Enzyme Catalysis and Protein Folding (W. H. Freeman & Co., 1999).
Jaques Staunton Chess Sets 1849-1939. (Kaissa Publications, 2007).