János Pintz - Selected publications#


List of publications(info)

1. J. Pintz, An effective disproof of the Mertens Conjecture, Astérisque 147-148 (1987), 325-333.
2. J. Pintz, Very large gaps between consecutive primes, J. Number Theory 63 (1997), 286-301.
3. R. C. Baker, G. Harman, J. Pintz, The difference between consecutive primes II, Proc. London Math. Soc. (3) 83 (2001), 532-562.
4. J. Pintz, Recent results on the Goldbach conjecture, Elementare und Analytische Zahlentheorie (Tagungsband), Proceedings ELAZ-Conference May 24-28, 2004, Schwarz, J. Steuding Eds., Franz Steiner Verlag, Wiesbaden, 2006, pp. 220-254.
5. D. A. Goldston, J. Pintz, C. Y. Yildirim, Primes in tuples I., Annals of Math. 170 (2009), no.2, 819-862.
6. D. A. Goldston, S. W. Graham, J. Pintz, C. Y. Yildirim, Small Gaps Between Products of Two Primes, Proc. London Math. Soc. (3) 98 (2009) 741-774.
7. D. A. Goldston, J. Pintz, C. Y. Yildirim, Primes in tuples II, Acta Math. 204 (2010), 1-47.
8. J. Pintz, Are there arbitrarily long arithmetic sequences of twin primes in arithmetic progressions?, An Irregular Mind, Szemerédi is 70, Bolyai Soc. Math. Studies, Vol. 21, Eds. I. Bárány, J. Solymosi, pp. 525-559, Springer, 2010.
9. D. A. Goldston, S. W. Graham, J. Pintz, C. Y. Yildirim, Small gaps between almost primes, the parity problem, and some conjectures of Erdős on consecutive integers, Int. Math. Res. Notices 7 (2011), 1439-1450.
10. D. A. Goldston, J. Pintz, C. Y. Yildirim, Positive proportion of Small Gaps Between Consecutive Primes, Publ. Math. Debrecen, 79 (2011), no.3-4, 433-444.

His works recieved more than 1500 citations; more than 50 books cite his results.
Imprint Privacy policy « This page (revision-3) was last changed on Thursday, 30. October 2014, 12:35 by Nowak Aleksandra
  • operated by