.

Andrew Ian Cooper - Publications#


This is a focused list of 6 key publications drawn from 214 publications in total, including 18 in Science, Nature, or other Nature-stable journals, and 61 in either J. Am. Chem. Soc. (JACS), Angew. Chem. , Int. Ed. (ACIE), or Adv. Mater.

(1) Functional materials discovery using energy–structure–function maps, A. Pulido, L. Chen, T. Kaczorowski, D. Holden, M. A. Little, S. Y. Chong, B. J. Slater, D. P. McMahon, B. Bonillo, C. J. Stackhouse, A. Stephenson, C. M. Kane, R. Clowes, T. Hasell, A. I. Cooper and G. M. Day, Nature, 2017, in press.
This paper establishes a new principle for the computationally-led discovery of solid state organic materials; that is, the use of 'energy-structure-function maps' (ESF maps). Using these computed maps, we discover a porous material with the lowest density ever reported for a molecular solid (0.41 g/cm3; surface area = 3,425 m2/g). The principles of ESF maps, however, are transferable to any molecular crystal where property can be calculated from structure.

(2) Liquids with permanent porosity. N. Giri, M. Del Pópolo, G. Melaugh, K. Rätzke, T. Koschine, M. Costa Gomes, L. Pison, A. I. Cooper and S. L. James, Nature, 2015, 527, 216–220.
The first example of the counter-intuitive concept of a 'porous liquid'. This paper received significant media attention when published and was highlighted in the 2015 in the C&E News, Year in Review (http://2015.cenmag.org/liquid-holes-html/#.WLwScXeca3I).

(3) Function-led design of new porous materials. A. G. Slater and A. I. Cooper, Science, 2015, 348, aaa8075.
This article surveys the basic functional considerations for designing porous solids for specific applications, rather than focusing on particular material sub-classes.

(4) Modular and predictable assembly of porous organic molecular crystal, J. T. A. Jones, T. Hasell, X. Wu, J. Bacsa, K. Jelfs, J. E. Warren, M. Schmidtmann, S. J. Chong, D. J. Adams, A. Trewin, F. Schiffman, F. Cora, B. Slater, A. Steiner, G. M. Day and A. I. Cooper, Nature, 2011, 474, 367.
The first example of using crystal structure prediction methods to predict the structures of organic functional materials as opposed to, say, pharmaceutical drug polymorphs.

(5) Porous organic cages, T. Tozawa, J. T. A. Jones, S. I. Swamy, S. Jiang, D. J. Adams, S. Shakespeare, R. Clowes, D. Bradshaw, T. Hasell, S. Y. Chong, C. Tang, S. Thompson, J. Parker, A. Trewin, J. Bacsa, A. M. Z. Slawin, A. Steiner and A. I. Cooper, Nature Mater., 2009, 8, 973.
This paper initiated the area of 'porous organic cages' and has led to a large number of reports both from our group (e.g., Nature Chem., 2017, 9, 17; JACS, 2016, 138,1653; Adv. Mater., 2016, 28, 2629; Nat. Rev. Mater., 2016, 1, 16053; Nature Comm., 2016, 7, 12750; Nature Chem., 2015, 7, 153; Nature Mater., 2014, 13, 954; JACS, 2014, 136, 7583; ibid. 1438; JACS 2013, 135, 9307; ibid. 10007; ibid. 17818; Nature Chem., 2013, 5, 276; ACIE, 2012, 52, 1253; JACS, 2011, 113, 14920; ibid. 16566; ACIE, 2011, 50, 749; ibid. 10653; Nature Comm., 2011, 2, 207; Nature Chem., 2010, 2, 750; ibid. 915; JACS, 2010, 132, 12773) and from others (e.g., ACIE, 2016, 10.1002/anie.201610782; Chem. Sci. 2016, 7, 3370; ACIE, 2014, 53, 1516; ibid. 5126; Chem. Soc. Rev. 2014, 43, 1934; ACIE, 2013, 52, 3611; ibid. 3746; ACIE, 2012, 51, 5252; ACIE, 2011, 50, 1046).

(6) Conjugated microporous poly(aryleneethynylene) networks, J.-X. Jiang, F. Su, A. Trewin, C. D. Wood, N. L. Campbell, H. Niu, C. Dickinson, A. Y. Ganin, M. J. Rosseinsky, Y. Z. Khimyak and A. I. Cooper, Angew. Chem., Int. Ed. 2007, 119, 8574.
This study led to the now broad and influential area of 'conjugated microporous polymers' (CMPs) and porous organic frameworks (PAFs) (ACIE, 2009, 48, 9457). The follow-up studies here are too numerous to list - there are at least 300 papers on CMPs alone - but the influence of this work can be gauged from review articles written by other groups (e.g., Chem. Rev., 2017, 117, 1515; Chem. Soc. Rev., 2013, 42, 8012). A recent and unexpected application is our use of CMPs for photochemical water splitting (JACS, 2015, 137, 3265).

  • operated by