Todd B. Marder - Selected Publications#


Publications: 443; Patents: 7 applied (2 granted thus far); Web of Science 10.04.2024: h-Index 101; Citations: 33,858 (non-self-citations 30,100), 105 papers with 100 or more citations each, 139 papers with 75 or more citations, 189 papers with 50 or more citations each. Google Scholar: h-Index 103; 36,384 citations.

1. J. Hu, M. Tang, J. Wang, Z. Wu, A. Friedrich, T.B. Marder*, "Photocatalyzed Borylcyclopropanation of Alkenes with a (Diborylmethyl)iodide Reagent", Angew. Chem. Int. Ed., 2023, 62, e202305175, DOI: 10.1002/anie.202305175 (Designated as a Hot Paper).

2. X. Zhang, F. Rauch, J. Niedens, R. da Silva, A. Friedrich, A. Nowak-Króll, S. Garden, T.B. Marder*, "Electrophilic C–H Borylation of Aza[5]]helicenes Leading to Bowl-Shaped Quasi-[7]Circulenes with Switchable Dynamics", J. Am. Chem. Soc., 2022, 144, 22316-22324, DOI: 10.1021/jacs.2c10865.

Highlighted in ChemistryViews: https://www.chemistryviews.org/quasi-7circulenes-prepared-from-aza5helicenes/
Highlighted by D. Zhao and X. Bai, Synfacts, 2023, 19, 0243, DOI: 10.1055/s-0042-1753326
https://www.thieme-connect.com/products/ejournals/abstract/10.1055/s-0042-1753326.

3. Z. Wu, J. C. Roldao, F. Rauch, A. Friedrich, M. Ferger, F. Würthner, J. Gierschner, T.B. Marder*, "Pure Boric Acid Does Not Show Room Temperature Phosphorescence (RTP)", Angew. Chem. Int. Ed., 2022, 61, e202200599, DOI: 10.1002/anie.202200599 (Designated as a Hot Paper).
Highlighted in Nachrichten aus der Chemie, April 2022, vol. 70, p. 55.

4. J. He, F. Rauch, A. Friedrich, J. Krebs, I. Krummenacher, R. Bertermann, J. Nitsch, H. Braunschweig, M. Finze, T.B. Marder*, "Phenylpyridyl-fused Boroles: A Unique Coordination Mode and Weak B–N Coordination-Induced Dual Fluorescence", Angew. Chem. Int. Ed., 2021, 60, 4833-4840, DOI: 10.1002/anie.202013692 (Designated as a Hot Paper).

5. A. Friedrich, I.E. Collings, K.F. Dziubek, S. Fanetti, K. Radacki, J. Ruiz-Fuertes, J. Pellicer-Porres, M. Hanfland, D. Sieh, R. Bini, S.J. Clark, T.B. Marder*, "Pressure-Induced Polymerization of Polycyclic Arene-Perfluoroarene Cocrystals: Single Crystal X-ray Diffraction Studies, Reaction Kinetics, and Design of Columnar Hydrofluorocarbons", J. Am. Chem. Soc., 2020, 142, 18907-18923, DOI: 10.1021/jacs.0c09021.
JACS Spotlight: J. Am. Chem. Soc., 2020, 142, 18733-18734, DOI: 10.1021/jacs.0c11191.

6. Y.M. Tian, X.N. Guo, I. Krummenacher, Z. Wu, J. Nitsch, H. Braunschweig, U. Radius, T.B. Marder*, "Visible-Light-Induced Ni-Catalyzed Radical Borylation of Chloroarenes", J. Am. Chem. Soc., 2020, 142, 18231-18242, DOI: 10.1021/jacs.0c08834.

7. Y.-M. Tian, X.-N. Guo, Z. Wu, A. Friedrich, S.A. Westcott, H. Braunschweig, U. Radius, T.B. Marder*, "Ni-Catalyzed Traceless, Directed C3-Selective C-H Borylation of Indoles", J. Am. Chem. Soc., 2020, 142, 13136-13144, DOI: 10.1021/jacs.0c05434.

Highlighted in Org. Process Res. Dev., 2020, 24, 1549-1557, DOI: 10.1021/acs.oprd.0c003181.

8. Z. Wu, J. Nitsch, J. Schuster, A. Friedrich, K. Edkins, M. Loebnitz, F. Dinkelbach, V. Stepanenko, F. Würthner, C.M. Marian, L. Ji, T.B. Marder*, "Persistent Room Temperature Phosphorescence from Triarylboranes", Angew. Chem. Int. Ed., 2020, 59, 17137-17144, DOI: 10.1002/anie.202007610 (Designated as a Very Important Paper).

9. Y.P. Budiman, A. Jayaraman, A. Friedrich, F. Kerner, U. Radius, T.B. Marder*, "Palladium-Catalyzed Homocoupling of Highly Fluorinated Arylboronates: Studies of the Influence of Strongly vs. Weakly Coordinating Solvents on the Reductive Elimination Process", J. Am. Chem. Soc., 2020, 142, 6036-6050, DOI: 10.1021/jacs.9b11871.

10. X. Liu, W. Ming, A. Friedrich, F. Kerner, T.B. Marder*, "Copper-Catalyzed Triboration of Terminal Alkynes Using B2pin2: Efficient Synthesis of 1,1,2-Triborylalkenes", Angew. Chem. Int. Ed., 2020, 59, 304-309, DOI: 10.1002/anie.201908466.

For recent reviews, see:

1. C.B. Kelly, L. Thai-Savard, J. Hu, T.B. Marder, G.A. Molander, and A.B. Charette, “Modern Cyclopropanation via Non-Traditional Building Blocks,” ChemCatChem, 2024, e202400110. DOI: 10.1002/cctc.202400110. Invited Concepts Article

2. Y.P. Budiman, R.N. Perutz, P.G: Steel, U. Radius, and T.B. Marder, “Applications of Transition Metal-Catalyzed ortho-Fluorine-Directed C-H Functionalization of (Poly)fluoroarenes in Organic Synthesis,” Chem. Rev., 2024, 124, xxxx. (accepted February 2024). DOI: 10.1021/acs.chemrev.3c00793.

3. S.M. Berger and T.B. Marder, “Applications of Triarylborane Materials in Cell Imaging and Sensing of Bio-relevant Molecules such as DNA, RNA, and Proteins,” Invited review for special thematic issue for Seth Marder’s 60th birthday, Mater. Horiz., 2022, 9, 112-120. DOI: 10.1039/D1MH00696G.

4. J. Hu, M. Ferger, Z. Shi, and T.B. Marder, “Recent Advances in Asymmetric Borylation by Transition Metal Catalysis,” Chem. Soc. Rev., 2021, 50, 13129-13188. DOI: 10.1039/d0cs00843e.

5. S.K. Bose, L. Mao, L. Kuehn, U. Radius, J. Nekvinda, W. Santos, S.A. Westcott, P.G. Steel, and T.B. Marder, “First-Row d-Block Element-Catalyzed Carbon-Boron Bond Formation and Related Processes,” Chem. Rev., 2021, 121, 13238-13341. DOI: 10.1021/acs.chemrev.1c00255

6. W. Ming, H. Soor, X. Liu, A. Trofimova, A. Yudin, and T.B. Marder, “alpha-Aminoboronates: Recent Advances in their Preparation and Synthetic Applications,” Chem. Soc. Rev.,2021, 50, 12151-12188. DOI: 10.1039/d1cs00423a.

7. Z. Wu, J. Nitsch, and T.B. Marder, “Persistent Room-Temperature Phosphorescence from Purely Organic Molecules and Multi-Component Systems,” Invited review, Adv. Opt. Mater., 2021, 9, 2100411. DOI: 10.1002/adom.202100411.

8. J. Maier and T.B. Marder, "Mechanistic and Kinetic Factors of ortho-Benzyne Formation in Hexadehydro-Diels-Alder (HDDA) Reactions" Chem. Eur. J., 2021, 27, 7978-7991. DOI: 10.1002/chem.202100608. (Mini review) (Selected by the Editorial Office for their Showcase of outstanding Review-type articles)

9. Y.-M. Tian, X.-N. Guo, H. Braunschweig, U. Radius, and T.B. Marder, “Photoinduced Borylation for the Synthesis of Organoboron Compounds,” Chem. Rev. 2021, 121, 3561-3597. DOI: 10.1021/acs.chemrev.0c01236.

10. S.M. Berger, M. Ferger, and T.B. Marder, "Synthetic Approaches to Triarylboranes from 1885 to 2020,” Chem. Eur. J., 2021, 27, 7043-7058. DOI: 10.1002/chem.202005302. (Selected by the Editorial Office for their Showcase of outstanding Review-type articles)

11. Y.P. Budiman, S.A. Westcott, U. Radius, and T.B. Marder, “Fluorinated Aryl Boronates as Building Blocks in Organic Synthesis,” Adv. Synth. Catal., 2021, 363, 2224-2255. DOI: 10.1002/adsc.202001291. Invited review for special thematic issue on Boron in Catalysis and Organic Synthesis (E. Fernandez, Guest Editor). (Designated as a Very Important Paper).

12. J. He, F. Rauch, M. Finze, and T.B. Marder, “(Hetero)Arene-Fused Boroles: A Broad Spectrum of Applications,” Chem. Sci., 2021, 12 128-147. DOI: 10.1039/d0sc05676f.

13. O. Diamond and T.B. Marder, “Methodology and Applications of the Hexadehydro-Diels-Alder (HDDA) Reaction,” Invited Review for special issue on “Novel pi-Electron Molecular Scaffolds,” Org. Chem. Frontiers, 2017, 4, 891-910. DOI: 10.1039/C7QO00071E.

14. F.K. Scharnagl, S.K. Bose, and T.B. Marder, “Acylboranes: Synthetic Strategies and Applications,” Invited Review, Org. Biomol. Chem., 2017, 15, 1738-1752. DOI: 10.1039/C6OB02425D.

15. L. Ji, S. Griesbeck, and T.B. Marder, “Recent Developments in and Perspectives on Three-Coordinate Boron Materials: A Bright Future,” Invited Review, Chem. Sci., 2017, 8, 846-863. DOI: 10.1039/C6SC04245G.

16. E.C. Neeve, S.J. Geier, I.A.I. Mkhalid, S.A. Westcott, and T.B. Marder, “Diboron(4) Compounds: From Structural Curiosity to Synthetic Workhorse,” Chem. Rev., 2016, 116, 9091-9161. DOI: 10.1021/acs.chemrev.6b00193.

17. S. Würtemberger-Pietsch, U. Radius, and T.B. Marder, “25 Years of N-Heterocyclic Carbenes: Activation of Both Main-Group Element-Element Bonds and NHCs Themselves,” Invited Dalton Perspective, Dalton Trans., 2016, 45, 5880-5895. DOI: 10.1039/C5DT04106F.

18. R.D. Dewhurst, E.C. Neeve, H. Braunschweig, and T.B. Marder, “sp2-sp3 Diboranes: Astounding Structural Variability and Mild Sources of Nucleophilic Boron for Organic Synthesis,” Chem. Commun., 2015, 51, 9594-9607. (Feature Article). DOI: 10.1039/c5cc02316e.

Imprint Privacy policy « This page (revision-5) was last changed on Tuesday, 30. April 2024, 14:17 by System
  • operated by