Pál Révész - Publications#

Download the list of publications(info)

BOOKS:

1. The laws of large numbers Akadémiai Kiadó and Academic Press, 1967.

2. Strong Approximations in Probability and Statistics Akadémiai Kiadó and Academic Press, 1981. (Csörgő M.)

3. Random walk in random and non-random environments World Scientific Publishing Co. 1990.

4. Random walks of infinitely many particles World Scientific Publishing Co. 1994.

5. Random walk in random and non-random environments Second edition World Scientific Publishing Co. 2005.

B. PAPERS:

1a. A Borsuk-féle feldarabolási problémához Matematikai Lapok 7 (1956) 108-111. (Heppes A.)

1b. Zum Borsukschen Zerteilungsproblem Acta Math. Acad. Sci. Hung. 7 (1956) 159-162. (Heppes A.)

2. A latin négyzet és az ortogonális latin négyzet-pár fogalmának egy újáltalánositása és ennek felhasználása kisérletek tervezésére MTA Mat. Kut. Int. Közl. 1. B (1956) (Heppes A.)

3a. Lineáris metilszilikon átrendeződések matematikai tárgyalása II. MTA Mat. Kut. Int. Közl. 1. B. (1956) 349-356. (Prékopa A.)

3b. Über Kinetik und Gleichgewicht der Aequilibrierungsreaktion von linearen Methylpolysiloxanen, II. Zeitschrift fürr Phys. Chemie 208 (1957) 33-41. (Lengyel B., Prékopa A., Török F.)

4. On the convergence of sequence of random variables MTA Mat. Kut. Int. Közl. 2. A. (1957) 51-58.

5. On mixing sequences of random variables Acta Math. Acad. Sci. Hung. 9 (1958) 389-393. (R'enyi A.)

6. On the limit distributions of sums of dependent random variables Annales Univ. Sci. Bp. de R. Eötvös nom. Sect. Math. 1 (1958) 135-142.

7. A limit distribution theorem for sums of dependent random variables Acta Math. Acad. Sci. Hung. 10 (1959) 125-131.

8. A generalization of the zero-one law Annales Univ. Sci. Bp. de R. Eötvös nom. Sect. Math. 2 (1959) 111-113.

9. Some remarks on the random ergodic theorem I MTA Mat. Kut. Int. Közl. 5. A. (1960) 375-381.

10. Seminar on random ergodic theory Aarhus Univ. 1961.

11. Some remarks on the random ergodic theorem II MTA Mat. Kut. Int. Közl. 6. A. (1961) 205-213.

12. Néhány megjegyzés Birkhoff 111. problémájáról MTA III. Oszt. Közl. 11 (1961) 273-287.

13. Probabilistic solution of problem 111. of G. Birkhoff Acta Math. Acad. Sci. Hung. 13 (1962) 187-198.

14. A random ergodic theorem and its application in the theory of Markov chains Ergod. Theory (Proceedings of an International Symposium, New Orleans, 1961), Acad. Press, New York, 1963.

15. A study of sequences of equivalent events as special stable sequences Publ. Math. 10 (1963) 319-325. (Rényi A.)

16. On sequences of quasi-equivalent events I MTA Mat. Kut. Int. Közl. 8. A. (1963) 73-83.

17. On sequences of quasi-equivalent events II MTA Mat. Kut. Int. Közl. 9. A. (1964) 227-233.

18. A central limit theorem for equivalent random variables Publ. Math. 12 (1965) 293-302.

19. On the statistical properties of the Walsh functions MTA Mat. Kut. Int. Közl. 9. A. (1964) 543-554. (M. Wschebor)

20. On the weighted averages of independent random variables MTA Mat. Kut. Int. Közl. 9. A. (1964) 583-587. (Komlós J.)

21. On a problem of Steinhaus Acta Math. Acad. Sci. Hung. 16 (1965) 311-318.

22. Some remarks on strongly multiplicative systems Acta Math. Acad. Sci. Hung. 16 (1965) 441-446.

23. Ortogonalitás és függetlenség MTA III. Oszt. Közl. 15 (1965) 411-425.

24. A convergence theorem of orthogonal series Acta Sci. Math. Szeged 27 (1966) 253-260.

25. On momentum-equivalent random variables Transactions of the Fourth Prague Conference 1965 Prague, (1967) 471-477.

26. On a zero-one law Zeitschrift für Wahrscheinlichkeitstheorie 7 (1967) 43-47. (Bártfai P.)

27. M -mixing systems I. Acta Math. Acad. Sci. Hung. 20 (1969) 431-442.

28a. A születési súly és kis súlyú újszülöttek (koraszülöttek) gyakoriságának alakulása hazánkban Orvosi Hetilap 111 (1970) 45-151. (Czeizel E., Bognár Z., Tusnády G.)

28b. Changes in the frequency of birth-weight and proportion of low weightbirth in Hungary British Journal of Preventive and Social Medicine 24 (1970) 146-153. (Czeizel E., Bognár Z., Tusnády G.)

29. Testing of density functions Periodica Mathematica Hungarica 1 (1971) 35-44.

30. On empirical density function Periodica Mathematica Hungarica 2 (1972) 85-110.

31a. A budapesti populáció tenyér és ujj dematoglifa mutatóinak "normál" értékei Orvosi Hetilap 112/5 (1971). (Osztovics M., Tusnády G., Czeizel E.)

31b. Dermatoglyphic Data in Sample of the Population of Budapest Acta Paediatrica Academica Sci. Hung. 12 (1971) 183-198. (Osztovics M., Czeizel E., Tusnády G.)

32. The law of the iterated logarithm for multiplicative systems Indiana University Mathematical Journal 21 (1972) 557-564.

33. A note to a paper of S. Takahaski Studia Sci. Math. Hung. 7 (1972) 25-26.

34. A note on the Robbins-Monro method Studia Sci. Math. Hung. 7 (1972) 355-362.

35. A remark to a paper of Gaposhkin Acta Sci. Math. Szeged 33 (1972) 237-241.

36. A strong law of the empirical density function Transaction of the Sixth Prague Conference 1971 Prague, (1973) 747-753.

37. On the rate of convergence of the Robbins-Monro method Zeitschrift für Wahrscheinlichkeitstheorie 25 (1972) 39-48. (Komlós J.)

38. A new law of the iterated logarithm for multiplicative system Acta Sci. Math. Szeged 34 (1973) 349-358.

39. Density estimation and pattern classification Problems of Control and Information 2 (1973) 67-80. (Rejtő L.)

40. Rényi Alfréd valószinüségszámitási munkássága Matematikai Lapok 21 (1970) 211-231.

41. A limit theorem for the Robbins-Monro approximation Zeitschrift für Wahrscheinlichkeitstheorie 27 (1973) 79-86. (Major P.)

42. A general method for density estimation Studia Sci. Math. Hung. 9 (1974) 81-92. (Földes A.)

43. Alfréd Rényi Annals of Math. Stat. 43 (1972) 1-16. (Vincze I.)

44. A modification of the Robbins-Monro process Studia Sci. Math. Hung. 8 (1973) 329-340. (Komlós J.)

45. Robbins-Monro procedure in a Hilbert space and its application in the theory of learning processes I Studia Sci. Math. Hung. 8 (1973) 391- 398.

46. Robbins-Monro procedure in a Hilbert space II Studia Sci. Math. Hung. 8 (1973) 469-472.

47. A new method to prove the invariance principle of Strassen's type I Zeitschrift für Wahrscheinlichkeitstheorie 31 (1975) 255-259. (Csörgő M.)

48. A new method to prove the invariance principle of Strassen's type II Zeitschrift für Wahrscheinlichkeitstheorie 31 (1975) 261-269. (Cs"orgő M.)

49. A law of the iterated logarithm for weakly multiplicative systems and its applications Acta Math. Acad. Sci. Hung. 25 (1974) 425-433.

50. Some notes on the empirical distribution function and the quantile process Coll. Math. Soc. J. Bolyai 11. Limit theorems of probability theory Keszthely, 1974. 59-71. (Cs"orgő M.)

51. On the empirical process when parameters are estimated Transaction of the Seventh Prague Conference, 1974 Prague, (1977) 87-97. (Csörgő M., Komlós J., Major P., Tusnády G.)

52. On multivariate empirical density functions Sankhya Ser. A. 38 (1976) 212-220.

53. Strong approximations of the quantile process Annals of Statistics 6 (1978) 882-894. (Csörgő M.)

54. On strong approximation of the multidimensional empirical process Annals of Probability 4 (1976) 729-743.

55. A strong approximation of the multivariate empirical process Studia Sci. Math. Hung. 10 (1975) 427-434. (Csörgő M.)

56a. Varga Tamás egy problémájáról Matematikai Lapok 24 (1973) 273-282. (Erdős P.)

56b. On the length of the longest head-run Coll. Math. Soc. J. Bolyai 16. Information Theory Keszthely, 1975, (1976) 219-228. (Erdős P.)

57. On the rate of convergence of Kesten's "accelerated stochastic approximation" Studia Sci, Math. Hung. 9 (1974) 453-460.

58. How to apply the method of stochastic approximation in the nonparametric estimation of a regression function Math. Operationsforsch. Stat. Ser. Statistics 8 (1977) 119-129.

59. Three theorems on multivariate empirical process Empirical Distributions and Processes, Oberwolfach, 1976. Lecture Notes in Mathematics 566, (1976) Springer Verlag.

60. How big are the increments of a Wiener Process? Annals of Probability 7 (1979) 731-737. (Cs"orgő M.)

61. A strong law of the empirical density function Periodica Math. Hung. 9 (1978) 317-324.

62. How big are the increments of a multiparameter Wiener process? Zeitschrift für Wahrscheinlichkeitstheorie 42 (1978) 1-12. (Cs"orgő M.)

63. How small are the increments of a Wiener process? Stochastic processes and their applications 8 (1979) 119-129. (Csörgő M.)

64. Néhány megjegyzés az 1976. évi Schweitzer Miklós emlékverseny valószinüségszámitási feladatához Matematikai Lapok 26 (1975) 161-178.

65. Véletlen indexes határeloszlások erős invarianciatételek segitségével Matematikai Lapok 26 (1975) 39-66. (Csörgő M., Csörgő S., Fischler R.)

66. Strassen type limit points for moving averages of a Wiener process The Canadian Journal of Statistics 6 (1978) 57-75. (Chan A. H. C., Csörgő M.)

67. On the standardized quantile process Optimizing Methods in Statistics (ed. J. Rustagi) Acad. Press (1979) 125-140. (Csörgő M.)

68. Strong theorems on coin tossing Proceedings of the Int. Cong. of Mathematicians Helsinki, 1978. 749-754.

69. How big must be the increments of a Wiener process? Acta Math. Acad. Hung. 33 (1979) 37-49. (Csáki E.)

70. On the nonparametric estimation of the regression function Problems of Control and Information 8 (1979) 297-302.

71. Approximations of the empirical process when parameters are estimated Annals of Probability 7 (1979) 790-810. (Burke M. P., Csörgő M., Csörgő S.)

72. A generalization of Strassen's functional law of iterated logarithm Zeitschrift für Wahrscheinlichkeitstheorie 50 (1979) 257-264.

73. On the non-differentiability of the Wiener sheet Contributions to Probability (ed. Gani, Rohatgi) Acad. Press 1981, 143-150. (Csörgő M.)

74. Multiplikativ rendszerek Matematikai Lapok 28 (1980) 43-63.

75. A note to the Chung-Erdős-Sirao theorem Asymptotic Theory of Statistical Tests and Estimation (ed. Chakravarti) Acad. Press 1980, 147-158.

76. How small are the increments of a Wiener sheet? The First Pannonian Symposium on Math. Statistics (ed. Révész, Schmetterer, Zolotarev), Springer Verlag, 1981, 207-219.

77. Local time and invariance Analytical Methods in Probability Theory, Proceedings of the Conference held at Oberwolfach, Germany, 1980. (ed. Dugue, Lukács, Rohatgi) Lecture Notes in Mathematics, 861 Springer Verlag 1981. 128-145.

78. An invariance principle for N. N. empirical density functions Coll. Math. Soc. J. Bolyai 32. Nonparametric Statistical Inference Budapest 1980, (1982) 151-170. (Csörgő M.)

79. A joint study of the Kolmogorov-Smirnov and the Eicker-Jaeschke statistics Statistics and Decisions 1 (1982) 57-65.

80. On the increments of Wiener and related processes Annals of Probability 10 (1982) 613-622.

81. Quantile processes and sums of weighted spacings for composite goodness-of-fit. Statistics and related topics Proc. of the Int. Symp. on Stat. and related topics. Ottawa, Canada 1980. North Holland 1981. (ed. Csörgő, Dawson, Rao, Sale) 69-87. (Csörgő M.)

82. Strong invariance for local times Zeitschrift für Wahrscheinlichkeitstheorie 62 (1983) 263-278. (Csáki E.)

83. Three problems on the lengths of increasing runs Stoch. Proc. and their Appl. 15 (1983) 169-179.

84. A strong invariance principle of the local time of r.v.'s with continuous distribution Studia Sci. Math. Hung. 16 (1981) 219-228.

85. On the local time of Brownian bridge Transactions of the Ninth Prague Conference 1982 Prague. (1983) 67-76.

86. A combinatorial proof of a theorem of P. Lévy on the local time Acta Sci. Math. Szeged 45 (1983) 119-129. (Csáki E.)

87a. How random is random? Probability and Math. Stat. 4 (1984) 109-116.

87b. Mennyire véletlen a véletlen? Értekezések, emlékezések Akad. Kiadó Budapest, 1984. 40 old.

87c. Véletlen sorozatok stabilitásáról Matematikai Lapok 30 (1978-82) 15-21.

88. How big are the increments of the local time of a Wiener process? Annals of Probability 11 (1983) 593-608. (Csáki E., Csörgő M., Földes A.)

89. Three strong approximations of the local time of a Wiener process and their applications to invariance Coll. Math. Soc. J. Bolyai 36. Limit theorems in probability and stat. Veszprém, 1982 Bolyai - North Holland, 1984. 223-254. (Csörgő M.)

90. Quantile processes for composite goodness-of-fit Coll. Math. Soc. J. Bolyai 36. Limit theorems in probability and stat. Veszprém, 1982. (1984) 255-304. (Csörgő M.)

91. On the favourite points of a random walk Mathematical Structures Computational Mathematics - Mathematical Modelling 2 Sofia 1984, 152-157. (Erdős P.)

92. Two approaches to constructing simultaneous confidence bounds for quantiles Probability and Math. Stat. 4 (1984) 221-236. (Csörgő M.)

93. On the increments of the local time of a Wiener sheet J. Multivariate Anal. 16 (1985) 277-289.

94. Density Estimation Handbook of Statistics Vol. 4. (ed. P. R. Krishnaiah - P. K. Sen) Elsevier Sei. Publ. (1984) 531-549.

95. Estimation of the regression function via orthogonal expansion Anniversary Volume on Approximation Theory and Functional Analysis Birkhauser 1984, 557-566.

96a. Chung és Erdős egy tételéről Matematikai Lapok 31 (1978-83) 243-249. (Csáki E.)

96b. On the length of longest excursion Zeitschrift für Wahrscheinlichkeitstheorie 68 (1985) 365-382. (Erdös P., Csáki E.)

97. On weak and strong approximation of the quantile process Proceedings of the Seventh Conference on Probability Theory Bucuresti 1984, 81-94. (Csörgő M., Csörgő S., Horváth L.)

98. On strong invariance for local time of partial sums Stochastic Processes and their Applications 20 (1985) 59-84. (Csörgő M.)

99. A nearest neighbour-estimator for the score function Probability Theory and Related Fields 71 (1986) 293-305 (Csörgő M.)

100. On the stability of the local time of a symmetric random walk Acta Sci. Math. 48 (1985) 85-96. (Csörgő M.)

101. Approximation of the Wiener Process and its Local Time Proc. of the 4-th Pannonian Symp. Vol. A. (ed. Konecky, Mogyoródi, Wertz) Akadémiai Kiadó 1985, 57-65.

102. Simple random walk on the line in random environment Probability Theory and Related Fields 72 (1986) 215-230. (P. Deheuvels)

103. Mesure du Voisinage and Occupation density Probability Theory and Related Fields 73 (1986) 211-226. (Csörgő M.)

104. How large must be the difference between local time and mesure du voisinage of Brownian motion? Statistics and Probability Letters 4 (1986) 161-166. (Csörgő M., Horváth L.)

105. The local time of a random walk in random environment New Perspectives in Theoretical and Applied Statistics (ed. Puri M. L., Vilaplana J. P., Wertz W.) (1987) J. Wiley 503-518.

106. On the optimality of estimating the tail index and a naive estimator Austral J. Statist. (1987) 29 166-178. (Csörgő M., Horváth L.)

107. Stability and instability of local time of random walk in random environment Stochastic Processes and their Applications (1987) 25, 185- 202. (Csörgő M., Horváth L.)

108. Many heads in a short block Mathematical Statistics and Probability Theory Vol. A, 53-67 (ed. Puri M. L., et al.) Reidel 1987, (Deheuvels P., Erdős P., Grill K.)

109. Weak laws for the increments of Wiener processes, Brownian bridges and partial sums of i.i.d.r.v.'s Mathematical Statistics and Probability Theory Vol. A. 69-88 (ed. Puri M.L. et al.) Reidel 1987 (Deheuvels P.)

110. Problems and results on random walks Mathematical Statistics and Probability Theory Vol. B. 59-65 (ed. Bauer P. et. al.) Reidel 1987 (Erdős P.)

111. On the maximum of a Wiener Process and its Location Probability Theory and Related Fields 76 (1987) 477-497. (Csáki E., Földes A.)

112. On the maximal distance between two renewal epoch Stochastic Processes and their Applications 27 (1988) 21-41. (Willekens E.)

113. On the area of the circles covered by a random walk Journal of Multivariate Analysis 27 (1988) 169-180. (Erdős P.)

114. In random environment the local time can be very big Sociéte Mathématique de France Astérisque (1988), 157-158, 321-339.

115. Extreme values with very heavy tails Lecture Notes in Statistics 51 (1989) Extreme Value Theory (ed. J. Hüsler, R. D. Reiss) 36-49.

116. Brownian local time approximated by a Wiener sheet The Annals of Probability (1989) 17, 516-537. (Csáki E., Csörgő M., Földes A.)

117. Simple symmetric random walk in Zd. Almost Everywhere Convergence Proc. of the Int. Conference on Almost Everywhere Conv. and Ergodic Th. 369-392 (ed. G. A. Edgar, L. Sucheston) Academic Press, Inc. Boston (1989).

118. Regularities and irregularities in a random 0, 1 sequence Statistical Papers (1990) 31 95-101.

119. A new law of iterated logarithm Acta Math. Hung. (1990) 55 125-131. (Erdős P.)

120. On the volume of spheres covered by a random walk A tribute to Paul Erdős 341-347. Ed. A. Baker, B. Bollob'as, A. Hajnal, Cambridge Univ. Press (1990).

121. On the relative frequency of points visited by random walk on Z2. Coll. Math. Soc. J. Bolyai, 57. Limit Theorems in Probability and Statistics Pécs, 1989, 27-33, Ed. I. Berkes, E. Csáki, P. Révész. Bolyai - North Holland. (1990) (P. Auer)

122. Estimates of the largest disc covered by a random walk. The Annals of Probability 18 (1990), 1784-1789.

123. Some limit theorems for the homogeneous Poisson process. Statistics & Probability Letters 12 (1991) 91-96. (P. Auer, K. Hornik)

124. On the almost sure central limit theorem. Almost Everywhere Convergence II. Proc. of the Int. Conference on Almost Everywhere Conv. and Ergodic Th. 209-225 (ed. A. Bellow, R. L. Jones) Academic Press, Inc. Boston (1991) (M. Peligrad)

125. On infinite series of independent Ornstein - Uhlenbeck processes. Stochastic Processes and their Applications 39 (1991) 25-44. (E. Csáki, M. Csörgő, Z. Y. Lin)

126. On hardly visited points of the Brownian motion. Probability Theory and Related Fields 91 (1992) 71-80. (A. Földes)

127. Long random walk excursions and local time. Stochastic Processes and their Applications 41 (1992) 181-190. (M. Csörgő)

128. Black holes on the plane drawn by a Wiener process. Probability Theory and Related Fields 93 (1992) 21-37.

129. Three problems on the random walk in Zd. Studia Scientiarum Mathematicarum Hungarica 26 (1991) 309-320. (P. Erdős)

130. Waiting for the coverage of the Strassen's set. Studia Scientiarum Mathematicarum Hungarica 26 (1991) 379-391.

131. Strong approximation of additive functionals. J. of Theoretical Probability 5 (1992) 679-706. (E. Csáki, M. Csörgő, A. Földes)

132. Clusters of a random walk on the plane. The Annals of Probability 21 (1993) 318-328.

133. Path properties of an infinite system of Wiener processes. J. of Theoretical Probability 6 (1993) 353-383.

134. Quadratic variation of the local time of a random walk. Statistics & Probability Letters 17 (1993) 1-12. (A. Földes)

135. On the coverage of Strassen-type sets by sequences of Wiener processes. J. of Theoretical Probability 6 (1993) 427-449. (P. Deheuvels)

136. Covering Problems. Theory of Probability and its Applications 38 (1993) 367-379.

137. A homogenity property of the ZZ2 random walk. Acta Sci. Math. (Szeged) 57 (1993) 477-484.

138. On almost sure local and global central limit theorems. Probability Theory and Related Fields 97 (1993) 321-337. (E. Csáki, A. Földes)

139. Strong theorems on the extreme values of stationary Poisson processes. J. of Statistical Planning and Inference 45 (1995) 291-300.

140. Global Strassen-type theorems for iterated Brownian motions. Stochastic Processes and their Applications 59 (1995) 321-341. (E. Csáki, M. Csörgő, A. Földes)

141. Distribution of the particles of a critical branching Wiener process. Bernoulli 2 (1996) 63-80.

142. The distribution of the particles of a branching random walk. Convergence in Ergodic Theory and Probability 345-363 (eds: Bergelson, March, Rosenblatt) Walter de Gruyter & Co. Berlin-New York 1996.

143. The local time of iterated Brownian motion. J. of Theoretical Probability 9 (1996) 717-743. (E. Csáki, M. Csörgő, A. Földes)

144. Sexual reproduction during motion. Research Developments in Probability and Statistics: Festschrift in Honor of Madan L. Puri on the Occasion of his 65th Birthday. (1996) 59-73. (Eds: Brunner, E. - Denker, M.) International Science Publishers Zeist (Utrecht, The Netherlands).

145. On the shape of the domain occupied by a supercritical branching random walk. Statistics & Probability Letters 30 (1996) 295-303.

146. Balls left empty by a critical branching Wiener Process. J. of Applied Math. and Stochastic Analysis 9 (1996) 531-549.

147. Random walk with alternating excursions. Studia Sci. Math. Hung. 32 (1996) 267-280. (E. Csáki, A. Földes)

148. On the radius of the largest ball left empty by a Wiener process. Studia Sci. Math. Hung. 33 (1997) 117-125. (P. Erdős)

149. Moderate deviation of a branching Wiener process. Studia Sci. Math. Hung. 33 (1997) 239-250.

150. Strassen theorems for a class of iterated processes. Transactions of the American Mathematical Society 349 (1997) 1153-1167. (E. Csáki, A. Földes)

151. On the occupation time of an iterated process having no local time. Stochastic Processes and their Applications 70 (1997) 199-217. (E. Csáki, M. Csörgő, A. Földes)

152. Functional laws of the iterated logarithm for local times of recurrent random walks on ZZ2. Ann. Inst. Henri Poincaré, Probabilités et statistiques 34 (1998) 545-563. (E. Csáki, J. Rosen)

153. A strong invariance principle for the local time difference of a symple symmetric planar random walk. Studia Sci. Math. Hung. 34 (1998) 25-39. (E. Csáki, A. Földes)

154. The range of a critical branching Wiener process. Studia Sci. Math. Hung. 34 (1998) 379-389.

155. Long excursions and iterated processes. Asymptotic methods in Probability and Statistics. A volume in honour of Miklós Csörgő (1998) 243-249. (Ed.: Szyszkowicz, B.) Elsevier (Amsterdam).

156. The maximum of a critical branching Wiener process. J. of Theoretical Probability 11 (1998) 953-977.

157. Supercritical branching random walk in d-dimensional random environment. Applied Statistical Science III. (1998) 41-51. (Ed.: Ahmed, S. E. - Ansanullah, M. - Sinha, B. K.) Nova Science Publishers, Inc. New York.

158. On the excursions of two-dimensional random walk and Wiener process. Random Walks (Bolyai Society Mathematical Studies, 9. 1999. Ed.: Révész P. - Tóth, B.) 43-58. (E. Csáki, A. Földes, Z. Shi)

159. Critical branching Wiener processes in IRd. Random Walks (Bolyai Society Mathematical Studies, 9. 1999. Ed.: Révész, P. - Tóth, B.) 299-348.

160. Strong approximation of spatial random walk in random scenery. Stochastic Processes and their Applications 88 (2000) 329-345. (Z. Shi)

161. Asymptotic properties of integral functionals of geometric stochastic processes. J. Appl. Probability 37 (2000) 480-493. (E. Csáki, M. Csörgő, A. Földes)

162. Favourite sites, favourite values and jump sizes for random walk and Brownian motion. Bernoulli 6 (2000) 951-975. (E. Csáki, Z. Shi)

163. On the inverse local time process of a plane random walk. Periodica Mathematica Hungarica 41 (2000) 227-236.

164. Pre-super Brownian motion. Periodica Mathematica Hungarica 41 (2000) 71-102. (M. Csörgő)

165. A strong invariance principle for two-dimensional random walk in random scenery. Stochastic Processes and their Applications 92 (2001) 181-200. (E. Csáki, Z. Shi)

166. Clustering of the critical branching process on the plane. Studia Sci. Math. Hung. 38 (2001) 357-366.

167. Long excursions of a random walk. J. of Theoretical Probability 14 (2001) 821-844. (E. Csáki, Z. Shi)

168. Large balls left empty by a critical branching Wiener field. Statistica Neerlandica 56 (2002) 195-205.

169. Large void zones and occupation times for coalescing random walks. Stochastic Processes and their Applications 111 (2004) 97-118. (E. Csáki, Z. Shi)

170. A prediction problem of the branching random walk. J. of Applied Probability 41 A (2004) 25-31.

171. On the explosion of the local times along lines of Brownian sheet. Ann. I. H. Poincare - PR 40 (2004) 1-24. (D. K. Khoshnevisan, Z. Shi)

172. The maximum of the local time of a transient random walk. Studia Sci. Math. Hung. 41 (2004) 395-406.

173. Tell me the values of a Wiener process at integers, I tell you its local time. Fields Institute Communications 44 (2004) 89-95.

174. Level crossings of a two-parameter random walk. Stochastic Processes and their Applications 115 (2005) 359-380. (D. K. Khoshnevisan, Z. Shi)

175. Frequently visited sets for random walks. Stochastic Processes and their Applications 115 (2005) 1503-1517. (E. Csáki, A. Földes, J. Rosen, Z. Shi)

176. Maximal local time of a d-dimensional simple random walk on subsets. J. Theoretical Probability 18 (2005) 687-717. (E. Csáki, A. Földes)

177. Large - time asymptotics for the density of a branching Wiener Process. J. Applied Probab. 42 (2005) 1081-1094. (J. Rosen, Z. Shi)

178. Heavy points of a d-dimensional simple random walk. Statistics & Probability Letters 76 (2006) 45-57. (E. Csáki, A. Földes)

179. On the local times of transient random walks. Acta Appl. Math. 96 (2007) 147-158. (E. Csáki, A. Földes)

180. On the behavior of random walk around heavy points. J. Theoretical Probability 20 (2007) 1041-1057. (E. Cs'aki, A. Földes)

181. Joint asymptotic behavior of local and occupation times of random walk in higher dimension. Studia Sci. Math. Hung. 44 (2007) 535-563. (E. Csáki, A. Földes)

182. On the local time of the asymmetric Bernoulli walk. Acta Sci. Math.(Szeged) 74 (2008) 349-379. (E. Csáki, A. Földes)

183. Transient nearest neighbor random walk on the line. J. Theoretical Probability 22 (2009) 100-122. (E. Csáki, A. Földes)

184. Random walk local time approximated by a Brownian sheet combined with an independent Brownian motion. Ann. I. H. Poincare - PR 45 (2009) 515-544. (E. Csáki, M. Csörgő, A. Földes)

185. Strong limit theorems for a simple random walk on the 2-dimensional comb. Electronic Journal of Probability 14 (2009) 2371-2390. (E. Csáki, M. Csörgő, A. Földes)

186. Transient nearest neighbor random walk and Bessel process. J. Theoretical Probability 22 (2009) 992-1009. (E. Csáki, A. Földes)

Imprint Privacy policy « This page (revision-14) was last changed on Thursday, 10. November 2011, 09:59 by Kaiser Dana
  • operated by